精选平行四边形教案范文汇总九篇
作为一名教职工,时常要开展教案准备工作,借助教案可以让教学工作更科学化。那么什么样的教案才是好的呢?下面是小编为大家整理的平行四边形教案9篇,仅供参考,希望能够帮助到大家。
平行四边形教案 篇1
教学目标:
1、通过拉一拉长方形,初步认识并了解平行四边形的特点。
2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形。
教学准备:两个长方形相框(相同大小,可活动)
教学过程:
一、动手探索,多角度认识:
1、我们学了四边形,怎么判断一个图形是不是四边形呢?
(板书:四边形四条直边四个角)
2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相 等,有4个直角)
3、拉动长方形框架,发生了什么变化?(角、边、形)
4、揭题:这就是我们今天要学的——平行四边形。(完善板书)
5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)
是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手 量一量。
6、生活中有这样的图形吗?
1)出示主题图:为什么移动门要设计成这样的形状呢?
2)展示三角形的稳定性和平行四边形的不稳定性。通过拉一拉的活动。
7、围一个平行四边形。
闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一 围。
8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)
鼓励优生多画几个不同的四边形。
9.“猜猜它是谁”:
1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?
2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形? 四、创设情境,欣赏平行四边形 。
在哪些地方可以见到平行四边形呢?
成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的`。接着让量一量书上的平行四边形的边和角,概括出平行四边形的特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。
不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。
重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。
平行四边形教案 篇2
【当堂检测】
1.(20xx 年永州市).下列命题是假命题的是( )
A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.
C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形.
2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )
A. B. C. D.都不对
3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的`周长为( )
A. B. C. D.
4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .
(1)求 ∶ 的值;
(2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;
(3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
平行四边形教案 篇3
教学要求:
1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。
2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。
教学重点:
1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。
2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。
3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。
教学难点:
1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。
1.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
1.平行四边形面积的计算
第一课时
教学内容:平行四边形面积的计算(例题和做一做,练习十七第13题。)
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3 . 引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长宽
2.口算出下面各长方形的面积。
(1)长1。2厘米,宽3厘米。
(2)长0。5米,宽0。4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的`方法计算平行四边形面积。
(1)请大家打开书64页(指名读第2段)。
(2)指名到投影上数。边数边讲解:我先数,它是平方厘米;再数,它是平方厘米;两部分合起来是平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=ah
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作,也可以省略不写。所以平行四边形面积的计算公式可以写成S=ah或S=ah。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.P66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
2.完成P.72页做一做第1、2题。
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个,它的面积与原平行四边形的面积。这个长方形的长与原平行四边形的相等。这个长方形的与原平行四边形的相等。因为长方形的面积等于,所以平行四边形的面积等于。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等
(2)平行四边形底越长,它的面积就越大
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
162015
20
6.练习十七第3题
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十六节第2题。
第二课时
教学内容:平行四边形面积计算的练习(P。74~75页练习十七第4~9题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4。90。75。4+2。640。250。87-0。49
530+2703。50。2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2。5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1。95公顷,
再求共收小麦多少千克:70001。95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
平行四边形教案 篇4
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的.面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形教案 篇5
教学目标
知识技能目标
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四 边形的这两种判定方法,并学会简单运用.
过程与方法目标
1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.
2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感态度价值观目标
通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的.学习热情.
教学重点:
平行四边形判定方法的探究、运用.
教学难点:
对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.
教学过程
第一环节 复习引入:
( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)
问题1(多媒体展 示问题)
1.平行四边形的定义是什么?它有什么作用?
2.平 行四边形还有哪些性质?
问题2
有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?
第二环节 探索活动(12分钟,学生动手探究,小组合作)
活动1:
工具:两根长度相等的笔,
两条平行线(可利用横格线).
动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
思考1.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.
活动2
工具:两根不同长度的细纸条.
动手:能否用这两根细纸条在平面上
摆出平行四边形?
思考2.1:你能说明你们摆出的四边形是平行四边形吗?
思考2.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形的性质:对角线互相平分的四边形是平行四边形
第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)
随堂练习:
1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.
(1)OA与OC,OB与OD相等吗?
(2)四边形BFDE是平行四边形吗?
(3)若点E,F在OA,OC的中点上,你能解决上述问题吗?
2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?
(让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)
学生想到的画法有:
(1)分别过A,C作BC,BA的平行线,两平行线相交于D;
(2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;
(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.
第四环节 小结:(4分钟,学生回答问题)
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.
第五环节 布置 作业:
B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题
A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?
② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?
平行四边形教案 篇6
教学内容:课本第72页。
教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。
教学过程:
一、复习。
1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)
2.填空。
0.28平方米=()平方分米=()平方厘米
32000平方米=()公顷
0.5平方千米=()公顷。
3.求下面平行四边形的面积。(口答)
(1)底18厘米,高10厘米
(2)底25分米,高4分米
(3)底12.5米,高8米
(4)底16米,比高多6米
(5)底和高都是30厘米
二、新授。
1.揭示课题。
师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)
2.出示例题。
一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
学生口述解题思路:求钢板的面积就是求平行四边形的面积。
学生独立解答
4.8×3.5?17(平方米)
答:它的面积约是17平方米
补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?
总重量=每平方米重量×平方米数
学生试做。
集体评讲。
钢板重量:3.9×17=66.3(千克)
三、巩固练习。
1.P72页做一做。
通过书面练习第1题达到巩固求平行四边形面积的计算能力。
指导书本第2题近似平行四边形的计算方法:把不规则的`近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。
2.练习十七第6题。
先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)
学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)
得出:底和高分别相等的平行四边形,面积也相等。
判断:下面的平行四边形面积相等吗?
3.练习十七第7题。
学生独立完成。集体核对。
4.练习十七第8题。
先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。
四、作业。
练习十七第9题。
五、补充练习。
已知一个平行四边形的面积是28平方米,底是7米,求高是多少?
引导学生思考:因为:a·h=S
所以:h=S÷a
平行四边形教案 篇7
(一)教学目标
1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
2.使学生掌握平行四边形和梯形的特征。
3.通过多种活动,使学生逐步形成空间观念。
(二)教材说明和教学建议 教材说明
本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。
例题
具体内容及要求
垂直与平行
例1
认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2
学习画垂线,认识“点到直线的距离”。
例3
学习画平行线,理解“平行线之间的距离处处相等”。
平行四边形和梯形
例1
把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
例2
认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。
学习画高。
教学建议
1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。
教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的'实际情况,增加或补充一些内容。
2.理清知识之间的内在联系,突出教学的重点。
由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。
3.注重学用结合,就地取材,充实教材内容。
尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。
4.加强作图的训练和指导,重视作图能力的培养。
这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。
5.本单元可用6课时完成。
平行四边形教案 篇8
教学目的
1.引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点.
2.会在方格纸上画长方形、正方形.
3.初步认识平行四边形.
教学重点
掌握长方形、正方形的特征
教学难点
长方形、正方形的区别和联系
教具、学具准备
多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板.
教学过程
一、创设情境,提出问题.
出示8根小棒(6长、2短)
1.小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多.
2.交流:请各小组到投影上边摆边说有几种.
3.设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容.(出示课题)
二、主动探索,研究问题.
1.认识长方形.
(1)独立探索,小组交流.从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流.)
(2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的.找几个组说一说.(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)
(3)辩论:长方形有什么特征呢?(小组讨论)
(4)教师总结:刚才有的同学利用身边的学具量一量,有的`同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角.【演示动画长方形、正方形】
(5)学生之间交流长方形的特点.每个人都用纸折折看,再验证一下.
2.认识正方形.
(1)独立探索,小组交流.
同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行.
(2)汇报交流:正方形有什么特征呢?(小组互相说)
(3)教师总结.我们用了同样的方法,验证了正方形的边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角.(继续演示动画长方形、正方形)
3.小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】.
(1)师问:长方形与正方形有什么相同点和不同点吗?
(2)教师总结:刚才我们研究了长方形和正方形的边角特点.发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等.
(3)引导学生揭示四边形的概念.
由四边形围成的图形就是四边形,长方形和正方形都是四边形.
(4)初步练习:在钉子板上围一个正方形和一个长方形.
4.平行四边形的初步认识.
(1)出示:
让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?
(2)投影出示画在方格纸上的平行四边形.
引导学生知道:它们有4个角,4条边.
教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形.
教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形.
引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点.)
(3)小组研讨,汇报总结.
平行四边形 角:4个
边:四条 相对的边相等
(4)利用学具摆2个不同的平行四边形.
(5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角.如图:
讨论:平行四边形与长方形有哪些相同,有哪些不同?
引导学生:平行四边形和长方形都有四条边,都是相对的边相等.长方形的四个角都是直角,而捏住长方形相对的两个角的顶点一拉,它就不是长方形了,是一个平行四边形.当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了.【演示动画变化的图形】
三、运用知识,解决问题.
1.要求:利用手中的小三角形摆长方形、正方形、平行四边形.(4个小三角形)
2.利用手中的七巧板摆一些漂亮的图形,再给它起个名字.
四、看书质疑,全课总结.
板书设计
探究活动
七巧板
游戏目的
帮助学生认识几何图形,培养空间关系的认识能力和想象能力.
游戏准备
学生每人准备各种各样的图形,如:三角形、长方形、正方形等.
游戏过程
1.学生按下面三个要求拼图:
①用任意两块图形拼成一个正方形;
②用任意三块图形拼成一个长方形;
2.学生自由拼图,可以拼几何图形、建筑物或其他图案,在规定的时间里谁拼得的图形多,谁就是优胜者.
注意事项
等分长方形的奥秘
活动内容
让学生用折纸的办法把长方形平均分成两份.
活动目标
1.通过折、画、讨论、猜测、验证等形式的活动,使学生掌握用一条直线等分长方形的方法.培养学生创造性思维的能力和探索未知的方法.
2.运用分组的活动形式,培养学生的合作精神和竞争意识.
重点和难点
通过教学,让学生感受并初步掌握实例分析综合思考提出猜测推理验证这种探索问题的方法.是本课教学的重点.如何探索出能等分长方形的直线的规律是本课教学的难点.
活动准备
1.教具:长方形纸若干张、教学课件.
2.学具:直尺、小刀、水笔、大小相等的长方形纸片约10张.
活动过程
1.折一折,把长方形平均分成大小相等的两份.然后用直尺沿着折痕画出直线.试一试,你们能折几种?
(1)请小组成员共同讨论,注意互相分工合作.
(2)长方形纸片在信封里.
(3)动手折纸时间为3分钟,比比看,哪组同学画得又快又对又多?
2.反馈交流:指名上台汇报小组讨论探究的结果.分了几种?是哪几种?然后老师把把相应的折法张贴在黑板上.
3.探索规律.
师:这样的直线还有吗?还有几条呢?我们先不忙下结论,还是先来研究这些已经知道的直线有什么共同特点.
(1)将你们小组等分的长方形纸片2张重叠,并把重叠的长方形纸片拿起来,对准强光处照一照,然后3张、4张逐渐重叠,你发现了什么?
(2)课件显示各种等分长方形的直线相交于同一点的动态过程.
(3)引导学生小结:等分长方形的直线都相交于长方形内的一点.
游戏前,教师可借助磁性黑板等教具作些示范演拼.在学生自由拼图时,教师可在黑板上勾画一些图案,以启发学生思维.
平行四边形教案 篇9
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。
教具准备:投影
教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。
长方形长×宽ab
正方形边长×边长a2
平行四边形底×高ah
三角形底×高÷2ah÷2
梯形(上底+下底)×高÷2(a+b)h÷2
2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
1.练习十八第12题:计算下面每个图形的面积。
3米8米12米
5.6米9.5米12米
5厘米
5.4
分5.8厘米5.2厘米
米
3分米5厘米7厘米
⑴省独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2”
⑶指6名学生板演,集体订正。
2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
练习十八第14题
四、攻破难题
1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?
分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2
⑵上底+下底=21+45=66米
⑶高=759÷66×2=23米20厘米
2.17题:已知右面梯形的上底
是20厘米,下底是34厘米,其中涂色
部分的面积是340平方厘米。这个梯形
的面积是多少?34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。
高:340×2÷34=20厘米,
面积:(34+20)×20÷2=540平方厘米
3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米
25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的.底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考题4厘米
右图中,梯形的面积是7212
平方厘米。请你算出阴影厘
部分的面积。米
解法一:先算出没有阴影部分
的面积:4×12÷2=24平方厘米,
再用梯形的面积减去这个三角形
的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:
72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
练习十八11、13题
【平行四边形教案】相关文章:
平行四边形教案3篇05-16
平行四边形教案4篇05-26
【实用】平行四边形教案4篇05-21
关于平行四边形教案6篇05-18
平行四边形教案模板六篇05-20
精选平行四边形教案汇编10篇05-26
精选平行四边形教案集合六篇05-26
关于平行四边形教案汇总6篇05-26
《平行四边形面积》 12-26