首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>八年级数学教案

八年级数学教案

时间:2023-06-14 12:30:00 教案 我要投稿

关于八年级数学教案

  在教学工作者开展教学活动前,通常需要用到教案来辅助教学,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?以下是小编为大家整理的关于八年级数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于八年级数学教案

关于八年级数学教案1

  教学目标:

  1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

  2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

  教学重点:

  算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程

  一、情境导入

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

  这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

  二、导入新课:

  1、提出问题:(书P68页的问题)

  你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

  这个问题相当于在等式扩=25中求出正数x的值。

  一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。

  也就是,在等式=a(x0)中,规定x = 。

  2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

  3、想一想:下列式子表示什么意思?你能求出它们的值吗?

  建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。

  4、例1求下列各数的`算术平方根:

  (1)100;(2)1;(3);(4)0。0001

  三、练习

  P69练习1、2

  四、探究:(课本第69页)

  怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

  方法1:课本中的方法,略;

  方法2:

  可还有其他方法,鼓励学生探究。

  问题:这个大正方形的边长应该是多少呢?

  大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

  建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

  五、小结:

  1、这节课学习了什么呢?

  2、算术平方根的具体意义是怎么样的?

  3、怎样求一个正数的算术平方根

  六、课外作业:

  P75习题13.1活动第1、2、3题

关于八年级数学教案2

  教学任务分析

  教学目标

  知识技能

  探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

  数学思考

  能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

  解决问题

  通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

  情感态度

  在应用等腰梯形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

  重点

  等腰梯形的性质及其应用.

  难点

  解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

  教学流程安排

  活动流程图

  活动的内容和目的

  活动1想一想

  活动2说一说

  活动3画一画

  活动4做—做

  活动5练一练

  活动6理一理

  观察梯形图片,引入本节课的.学习内容.

  了解梯形定义、各部分名称及分类.

  通过画图活动,初步发现梯形与三角形的转化关系.

  探究得到等腰梯形的性质.

  通过解决具体问题,寻找解决梯形问题的方法.

  通过整理回顾,巩固知识、提高能力、渗透思想.

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1]

  观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

  演示图片,学生欣赏.

  结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

  由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

  [活动2]

  梯形定义一组对边平行而另一组对边不平行的四边形叫做梯形.

  学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

  通过类比,培养学生归纳、总结的能力.

  问题与情景

  师生行为

  设计意图

  一些基本概念

  (1)(如图):底、腰、高.

  (2)等腰梯形:两腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一个角是直角的梯形叫做直角梯形.

  学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后,教师可以强调:①梯形与四边形的关系;

  ②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

  熟悉图形,明确概念,为探究图形性质做准备.

  [活动3]

  画一画

  在下列所给图中的每个三角形中画一条线段,(1)怎样画才能得到一个梯形?

  (2)在哪些三角形中,能够得到一个等腰梯形?

  在学生独立探究的基础上,学生分组交流.

  教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

  本次活动教师应重点关注:

  (1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

  (2)学生能否将等腰三角形转化为等腰梯形.

  (3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

  等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

  问题与情景

  师生行为

  设计意图

  [活动4]

  做—做

  探索等腰梯形的性质(引入用轴对称解决问题的思想).

  在一张方格纸上作一个等腰梯形,连接两条对角线.

  (1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的线段和相等的角?学生画图并通过观察猜想;

  (2)这个等腰梯形的两条对角线的长度有什么关系?

  学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

  针对不同认识水平的学生,教师指导学生活动.

  师生共同归纳:

  ①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

  ②等腰梯形两腰相等.

  ③等腰梯形同一底上的两个角相等.

  ④等腰梯形的两条对角线相等.

  教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

  [活动5]

  练—练

  例1(教材P118的例1)略.

  例2如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的长.

  师生共同分析,寻找解决问题的方法和策略.

  例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

  分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

  其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

  问题与情景

  师生行为

  设计意图

  例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,BE⊥AC于E.

  求证:BE=CD.

  分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  证明(略)

  例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

  [活动6]

  1.小结

  2.布置作业

  (1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

  (2)已知:如图,梯形ABCD中,CD//AB,,.

  求证:AD=AB—DC.

  (3)已知,如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

  师生归纳总结:

  解决梯形问题常用的方法:

  (1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

  (2)“作高”:使两腰在两个直角三角形中(图2);

  (3)“延腰”:构造具有公共角的两个等腰三角形(图3);

  (4)“平移对角线”:使两条对角线在同一个三角形中(图4);

  (5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

  尽量多地让学生参与发言是一个交流的过程.

  梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

  学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

关于八年级数学教案3

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的'定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

【八年级数学教案】相关文章:

小学数学教案06-13

大班数学教案05-27

精选小学数学教案3篇06-07

【精选】小学数学教案4篇06-11

小学数学教案四篇05-16

小学数学教案(15篇)06-14

小学数学教案15篇06-14

大班数学教案14篇06-01

【精品】小学数学教案3篇06-05

大班数学教案15篇06-06

Baidu
map