首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>初一数学数轴教案

初一数学数轴教案

时间:2023-07-10 13:26:24 教案 我要投稿
  • 相关推荐

初一数学数轴教案

  作为一名老师,时常会需要准备好教案,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编为大家收集的初一数学数轴教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学数轴教案

初一数学数轴教案1

  一、学生情况分析

  本学期我担任七年级数学教学,该班共有学生24人。从毕业成绩来看七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

  二、教材及课标分析

  第一章有理数

  1、通过实际例子,感受引入负数的必要性。会用正负数表示实际问题中的数量。

  2、理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。通过上述内容的学习,体会从数与形两方面考虑问题的方法。

  3、掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。

  4、理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示。了解近似数与有效数字的概念。

  第二章整式的加减

  1、理解并掌握单项式、多项式、整式等等概念,弄清它们之间的区别与联系。

  2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

  3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解为的运算律和运算性质在整式的加减运算中仍然成立。

  4、能分析实际问题中的数量关系,并列出整式表示。体会用字母表示数后,从算术到代数的进步。

  第三章一元一次方程

  1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。

  2、通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。

  3、了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。

  4、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。

  5、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。

  第四章图形认识初步

  1、通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。

  2、能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系。在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。

  3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段。

  4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图)。

  5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图。

  6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义。

  7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意。

  三、学生学习习惯与兴趣的培养

  针对以往学生中出现的学习习惯不良的现象,本学期我们还要抓好每个学生尤其是新生和学困生的学习常规,培养他们养成良好的学习习惯和学习兴趣,这也是我们进一步转化学困生,控制学生流失的根本保证。

  1、指导学生养成预习的习惯。

  预习是上好新课、取得高效率的学习成果的基础。基本要求:

  ①及时预习。根据教学进度和教材的难易程度,适当地提前预习新课。②善于预习。依据知识基础、教材内容和学科特点等,选择适合自己实际情况的预习方法。要记录好新教材中的重点问题和不懂的问题,以便上课时加以注意。

  2、指导并监督学生养成良好的听课习惯。

  听课是学生获得知识、发展智能、培养健康情感的主要途径。听课的基本要求是:①要做好听课准备。包括学习用品、相关知识和心理准备。②要集中注意力,专心听讲。③要注意突出重点,抓住关键。

  ④要踊跃回答问题。积极思考,敢于发问,敢于发表自己的'不同见解。⑤要做好笔记。记住重点内容以及分析、解决问题的思路和方法等。教师要定期查看学生的学习笔记,及时进行指导。

  3、指导学生养成复习的习惯。

  复习是学生自己或在教师指导下,加深和巩固对所学知识的理解和记忆,检查学习效果,防止知识遗忘,提高记忆能力和自学能力,为下一次新课的学习打好知识基础的重要过程。复习的基本要求是:①要及时复习。复习要及时,每天复习以巩固当天所学的知识。一个单元、一个章节后,也要及时复习,及时巩固知识。②复习要有针对性,要抓住要点,对一些重要的基本概念和基础知识,通过理解加深记忆。③复习要注意归纳总结,使知识更加条理化、层次化。

  4、培养学生养成认真、及时完成作业的习惯。

  作业是学生加深和巩固所学知识,检查当天的学习效果,提高运用所学知识分析问题、解决问题的能力的重要环节。基本要求是:①要及时完成作业。当天的作业要当天完成。②要独立完成作业。养成独立思考和完成作业的习惯。③要注意解题方法,总结答题规律,答题要有一定的速度。④要正确对待作业的评价。要及时订正,找出错误的原因所在,要认真总结解题规律。各教研组每周要及时检查教师的教学计划执行情况、教案、作业批改、教研活动记录、课后辅导记录。教师在备课过程中,基本上能够按照新课程的要求备课,做到不求全面,但求突破。布置作业时,做到少而精。全科作业量要控制在小时左右。教师的讲课时间一般控制在30分钟左右,留下更多的时间供学生自学、复习、整理。这样,真正把课堂改革引向深入,有力的推动了素质教育的开展。

  5、培养学生良好的学习兴趣

  爱因斯坦曾说过:“兴趣是的老师”。学生对知识感兴趣,才能主动去接触知识,从而发现知识,去探索知识。那么怎样培养学生的学习兴趣呢,我认为应该在课堂教学中做到以下几点:

  (1)导课新颖,引起兴趣

  “良好的开端,是成功的一半”。如何诱发学生产生与学习内容、学习活动本身相联系的直接学习兴趣,使学生从新课伊始产生强烈的求知欲望是至关重要的。

  (2)明确目的,产生兴趣

  心理学研究表明,兴趣是在需要的基础上产生的,通过人的实践活动形成和发展的。当一个人有了某种需要时,才会对相关的事物引起注意,并产生兴趣。因此,在导入新课后,应明确具体地交待学习目标,使学生明确本节课的学习内容在知识体系中以及在实际应用中的地位、作用,以引起学生的重视,产生心理的需要,引发学习的愿望,从而产生浓厚的兴趣。

  (3)创设情景,诱发兴趣

  在教学中,适时地创设和谐、愉悦的求知情景,激发学生乐学、爱学数学的内驱力,诱发学生学习兴趣。

  (4)动手操作,促进兴趣

  动手操作活动是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。它需要学生多种感官参与活动,动脑思考,动口表达,并需要学生独立、自觉地运用知识解决问题。总之,就是使学生在愉快的操作活动中掌握抽象的数学知识,既发展学生的思维,又提高学生的学习兴趣。比看教师拼、摆,听师讲解获得的知识牢固得多,既能提高学生的学习兴趣,又能发展学生的数学潜能。

  (5)寻求规律,发展兴趣

  数学知识的特点之一就是具有高度的抽象性、严谨性,所以数学教学必须重视培养学生的分析、推理能力,突出数学知识的特点及规律,以直接或间接的形式引导学生发现规律、掌握规律,才能使学生越学越有兴趣,从而正确运用规律解决问题。

  四、具体措施

  1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

  2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。

  3、突出方程这个重点内容,将有关式的预备知识融于讨论方程的过程中;突出列方程,结合实际问题讨论解方程;通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;重视数学思想方法的渗透,关注数学文化。

  4、把握好“图形初步认识”的有关内容的要求。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练;利用好选学内容。

  5、适当加强练习,加深对基本知识和基本技能的掌握,但不一味追求练习的数量。

  7、重视现代信息技术的运用,着重利用计算器,丰富学习资源。

  8、注重对学生进行学法指导。读法指导、听法指导、思法指导、写法指导、记法指导。

初一数学数轴教案2

  教学目的:

  理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

  重点、难点

  1、重点:弄清应用题题意列出方程。

  2、难点:弄清应用题题意列出方程。

  教学过程

  一、复习

  1、什么叫一元一次方程?

  2、解一元一次方程的理论根据是什么?

  二、新授。

  例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的'盐的质量相等?

  分析:等量关系;A盘现有盐=B盘现有盐

  检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

  例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

  1.题目中有哪些已知量?

  (1)参加搬砖的初一同学和其他年级同学共65名。

  (2)初一同学每人搬6块,其他年级同学每人搬8块。

  (3)初一和其他年级同学一共搬了1400块。

  2.求什么?初一同学有多少人参加搬砖?

  3.等量关系是什么?

  初一同学搬砖的块数十其他年级同学的搬砖数=1400

  三、巩固练习

  教科书第12页练习1、2、3

  四、小结

  列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

  五、作业

初一数学数轴教案3

  教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出数轴的`定义,即规定了原点、正方向和单位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例变式练习

  例1画一个数轴,并在数轴上画出表示下列各数的点:

  例2指出数轴上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面数轴上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面数轴上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学数轴教案4

  一、指导思想:

  深化教学改革,以促使学生全面、持续、和谐的发展为出发点,课堂中以“学生的发展为本,活动为主线,创新为主旨”,培养学生的创新意识和实践能力为重点,充分体现“新课程、新标准、新教法”坚持走“教研”之路,努力探索“减负增效”的教育教学模式,从培养学生学数学、用数学的能力入手,持之以恒地开展教研活动。充分发展学生数学思维,全面提高教育教学质量。

  二、学生情况分析

  七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。

  三、教材及课标分析

  第一章有理数

  1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.

  2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.

  3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.

  4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.

  第二章整式的加减

  掌握单项式,多项式以及相关的概念。充分理解并掌握同类项的概念,在此基础上掌握整式的加减法,并能熟练运用,为下一章一元一次方程打下坚实的基础。第三章一元一次方程

  1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.

  2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.

  3.了解解方程的基本目标(使方程逐步转化为=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.

  4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的'思想.

  5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.

  第四章图形认识初步

  1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系.

  2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉.

  3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段.

  4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图).

  5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.

  6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识?释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.

  7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.

  四、具体措施

  1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

  2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。

  3、突出方程这个重点内容,将有关式的预备知识融于讨论方程的过程中;突出列方程,结合实际问题讨论解方程;通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;重视数学思想方法的渗透,关注数学文化。

  4、把握好“图形初步认识”的有关内容的要求。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练;利用好选学内容。

  5、适当加强练习,加深对基本知识和基本技能的掌握,但不一味追求练习的数量。

  6、搞好教学六认真,注重对学生进行学法指导。读法指导、听法指导、思法指导、写法指导、记法指导。

【初一数学数轴教案】相关文章:

数轴说课稿05-02

数轴 03-20

《数轴》 02-15

初一数学 11-29

初一数学 12-13

初一数学教学总结11-21

初一数学 【荐】06-18

初一数学 【热】06-17

初一数学 【精】06-15

初一数学 【推荐】06-15

Baidu
map