[优秀]苏教版六年级数学上册教案
在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?下面是小编为大家整理的苏教版六年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
苏教版六年级数学上册教案1
教学目标:
1.通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。
2.经历探索活动,了解反比例曲线图的特征。
教学重点:
探究长方形面积不变时,长与宽的关系。
教学难点:
发现表示反比例曲线图的特征。
教学过程:
一、旧知铺垫。
1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?
2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?
3、说一说。
(1)两个乘数的变化情况。
(2)两个乘数成什么关系?
(3)你有什么猜想?
二、探索新知。
用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。
x/cm 1 2 3 4 6 8 12 24
y/cm 24 12 8 6 4 3 2 1
1、说一说长与宽的变化情况。(小组交流)
2、这里哪个量一定?
3、面积一定时,长方形的长与宽有什么关系?(小组讨论)
板书:长×宽=长方形面积(一定)
4、根据上面的数据,在方格纸上画出8个长方形。(每格代表1 cm2)
过程要求
(1)出示方格纸,并标明X、Y轴上的数字。
(2)教师边讲解,边画长方形。
(3)学生接着画。(直接在课本上完成)
5、连接图中的点A,B,C,D……
(1)猜一猜:图中的点A,B,C,D……在一条直线上吗?
(2)师生一起连线,验证自己的.猜想。
三、课堂小结
说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。
四、巩固练习
面包的总个数不变,每袋装的个数与袋数如下表。
每袋个数2 3 4 6 8 12 24
袋数12 8 6 4 3 2 1
(1)每袋个数与袋数有什么关系?说明理由。
(2)把上面的数据制成图表。
苏教版六年级数学上册教案2
教学目标:
使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。
教学资源:
小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。
教学过程:
一、揭示课题
今天,我们继续进行整理和练习。
二、基本练习
1、根据下面的条件,说说数量间的相等关系。
(1)师傅每小时加工的零件比徒弟的3倍少18个。
(2)一堆黄沙运走了30车后还剩下16吨。
(3)一条围巾的价钱比一副手套价钱的2倍多25元。
2、在括号里填上含有字母的式子
(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。
(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的'有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。
三、练习与应用
1、求x的值
(1)三角形面积275cm。 (2)长方形周长9m。
第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。
第(2)小题
先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。
学生列出的方程可能有以下几种情况:
2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2
问:这几个方程哪些你会解了?请你说说应怎样解?
(对于有困难的学生,教师要多加关注,注意个别辅导。)
交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。
指名3位学生分别板演。再集体交流。
2、第6题、第7题、第9题、第10题
让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。
3、第8题
猎豹追捕猎物时的速度大约是一名优秀短跑运动员百米赛跑速度的3倍,大约比这名运动员每秒多跑20米。这名运动员每秒大约跑多少米?这只猎豹呢?
先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?
再让学生解答问题,然后说说自己有什么感想。
四、思考题
盒子里装有同样数量的红球和白球。每次取出6个红球和4个白球,取了若干次以后,红球正好取完,白球还有10个。一共取了几次?盒子里原来有红球多少个?
学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。
再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。
五、总结:
通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?
苏教版六年级数学上册教案3
教学目标
1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。
2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。
教学重点
理解比的意义,比和分数、除法之间的联系。
教学过程
一、 创设问题情境,引入比
电脑出示三幅长方形的画(标出每一幅的长和宽)。
谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)
提问:还可以怎样表示它们的关系?
过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。
二、 自主活动,认识比
1. 用比表示两个同类量的相除关系。
(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?
学生分别用比表示另外两幅画的长和宽的关系。
(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。
谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。
指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)
再问:那么水和洗洁液的比是几比几?表示什么意思?
师生共同讨论1 ∶ 8和1 ∶ 1的含义。
2. 用比表示两个不同类量的.相除关系。
谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。
提问:根据图中的信息,你知道梨的单价是多少元吗?
根据学生回答,板书:单价=总价÷数量。
讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。
提问:你能用比来表示苹果的总价和数量之间的关系吗?
这里的6 ∶ 3表示什么意思?(表示总价除以数量)
3. 理解比的意义。
谈话:根据上面的例子,你能说一说什么叫两个数的比吗?
小结:两个数相除又叫做两个数的比。
4. 自学课本。
提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?
反馈:通过自学,你又了解了哪些知识?
师生共同讨论下面的问题:
(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?
(2)什么叫比值?怎样求比的比值?
(3)比和除法、分数有什么联系?
(4)比还可以写成怎样的形式?
小结:(略)
三、 巩固练习,深化理解
1. 完成“练一练”第1、2题。
学生完成填空后,让学生说一说每个比所表示的意思。
2. 完成“练一练”第3题。
学生改写后,再读一读,并分别指出每一个比的前项和后项。
3. 小强和爸爸身高的比。
出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。
学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。
4. 糖水的甜度。
出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。
提问:你知道哪杯水甜吗?为什么?
出示:第三杯中糖4克,水100克。
谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。
提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?
四、 课堂总结
提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?
五、 课外延伸
出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?
课件播放短片,介绍黄金比。
谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。
苏教版六年级数学上册教案4
教学内容:
第25~26页,例2、例3及练习四的第3~8题。
教学目的:
1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:
掌握圆锥体积的计算公式。
教学难点:
正确探索出圆锥体积和圆柱体积之间的关系
教具准备:
每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
组织学生实验分组合作学习
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)
学生叙述实验过程并总结结论,得出计算公式
板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,字母公式:V= 1/3Sh
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的.体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
四、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题
①这道题已知什么?求什么?
②求圆锥的体积必须知道什么?
③求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题
①圆柱的侧面积等于多少?
②圆柱的表面积的含义是什么?怎样计算?
③圆柱体积的计算公式是什么?
④圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
五、课堂练习
1、填空
(1)圆锥体体积的计算公式( )
(2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的()。
(3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是()。
(4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高()。
(5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。
(6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。
2、判断
(1)圆柱体的体积一定比圆锥体的体积大.
(2)圆锥的体积等于和它等底等高的圆柱体的1/3.
(3)圆锥体、正方体、长方体的体积都等于底面积×高。
(4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。
3、补充习题
(1)一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?
(2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
(3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?
(4)在一个底面半径是10cm的圆柱形水桶中装有水,把一个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少?
(5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?
六、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
华体会可以注销账号不 :
从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。
苏教版六年级数学上册教案5
教学目标
1.使学生熟练地掌握有关数的整除概念,弄清概念间的联系与区别。
2.提高判断能力,能灵活运用概念解决实际问题,使学生进一步认识到概念之间相辅相承相互依存的辩证关系。
教学重点和难点
数的整除概念。数的整除概念间的联系与区别。
教学过程设计
(一)导入
今天我们复习数的整除这一单元的部分知识。(板书:数的整除复习概念)通过这节课复习,我们要准确掌握概念,并理解概念,弄清概念间的内在联系与区别,从而灵活运用知识解决实际问题。
(二)复习过程
1.复习倍数公倍数最小公倍数。
请大家看投影片上的三道算式:
①106=1.6 ②382=19 ③156=2.5
(1)第①和②、③两道算式有什么不同?
(2)②和③相比较又有什么不同?(板书:整除)并追问:什么叫整除?
(3)观察整除式382=19,谁能被谁整除?为什么?
(4)在38能被2整除的前提下,38是2的什么? 2又是38的什么?(板书;倍数、约数)
(5)什么叫倍数?什么叫约数?
(6)倍数、约数能单独存在吗?它依存于哪个概念?
(7)从382=19这个式子中,可以看出38是2的倍数,还能看出38是谁的倍数?那么38可以叫做2和19的什么?(板书:公倍数)
(8)2和19只有38这一个公倍数吗?有多少个?为什么?
(9)既然2和19的公倍数是无限多个,那么有最大的公倍数吗?有最小的吗?是多少?
(板书:最小公倍数)
(10)什么叫公倍数?什么叫最小公倍数?
(11)依据382=19这个等式,谁能用整除、倍数、公倍数、最小公倍数来说明等式中3个数之间的关系?
2.复习约数公约数最大公约数。
(1)我们已经知道38是2的倍数,2是38的约数,除2以外,38还有哪些约数?(板书;1,2,19,38)
(2)2的约数有哪些?19的约数有哪些?
(3)观察38,2,19这三个数的约数,你能指出它们的公约数吗?(板书:公约数)
(4)几个数的公约数的个数是有限的还是无限的?为什么?
(5)38和2的公约数中最大的一个叫38和2的什么?(板书:最大公约数)
(6)38和2的最大公约数是几?38和19的最大公约数是几?
(7)什么叫公约数?什么叫最大公约数?
(8)2和19有公约数吗?是几?有最大公约数吗?是几?
(9)2和19的最大公约数是1,2和19是什么关系?
(10)什么叫互质数?(板书:互质数)
(11)请你举出有互质关系的两个数。
3.复习质数、合数、质因数、分解质因数。
(1)观察38,2,19的约数的个数,并以此为标准,给这三个数分类,可以分几类?
(2)什么叫质数?什么叫合数?(板书:质数、合数)
(3)如果把382=19改写成38=219,2和19叫38的什么?为什么?(板书:质因数)
(4)说2和19是质因数对吗?为什么?
(5)质因数能单独存在吗?它必须依存于什么概念?还有什么概念不能单独存在?
(6)把38这个合数写成2和19,这两个质因数相乘的形式叫什么?(板书:分解质因数)
4.复习能被2,3,5整除的数的特征。
(1)在计算中,我们常常需要判断一个数能不能被另一个数整除,我们可以根据数的一些特征来判断。我们都学过哪些数的整除特征?(板书:能被2,5,3整除的数的特征)
(2)38,2,19中哪个数能被2整除。为什么?能被2整除的数的特征是什么?
(3)能被2整除的数叫什么数?不能被2整除的数呢?(板书:奇数、偶数)
(4)判断一个数是奇数还是偶数的依据是什么?
(5)能被5,3整除的数有什么特征?
(6)改38中的一个数字,使它能被3整除,怎样改?
(7)能同时被2和5整除的数有什么特征?能同时被2,3,5整除的数有什么特征?你能分别举几个数吗?
(三)复习概念间的关系
(1)在刚才复习的这些概念中,有哪些概念不能单独存在,请你列举出来。(板书:倍数、约数、质因数)
(2)倍数、约数、质因数分别依存于什么概念?这些概念之间的关系是依存关系。(板书:依存关系)
(3)哪些概念之间的关系可以用下图表示?
(4)它们之间的'这种关系叫什么关系?(板书:包含关系)
(5)小结:我们通过观察382=19这个等式中三个数之间的关系,不仅整理出了数的整除有关概念的网络图,还通过分析了解了概念间的关系。
(四)练习
(1)填空。
①在自然数中,既是质数又是偶数的最小的一个数是( );既是质数又是奇数的最小的一个数是( );既是奇数又是合数的最小的一个数是( );既是偶数又是合数的最小的一个数是( );既不是质数又不是合数的一个数是( )。
②所有自然数的最大公约数是( )。
③能被3和5同时整除的最小三位数是( );最大三位数是( )。
④小于10的所有质数的和是( )。
⑤一个四位数,千位上的数既是奇数又是合数,百位上的数既是偶数又是质数,十位上的数是自然数,但既不是质数又不是合数,个位上的数是最小合数,这个四位数是( )。
(2)判断题。(对的画,错的画。)
①相邻的两个自然数一定互质。 ( )
②最小的质数是自然数中全部偶数的最大公约数。 ( )
③任意两个自然数的积,一定是合数。 ( )
(3)思考题。
有14,30,33,35,39,75,143,169八个数。①把这八个数分别分解质因数;②把这八个数分成两组,每组四个数,且使它们的乘积相等。应该怎样分?
课堂教学设计说明
本节课分三个层次教学。
1.通过一题多问,从具体到抽象,把本单元的主要概念联系起来,形成网络。即:
复习倍数公倍数最小公倍数。
复习约数公约数最大公约数。
复习质数、合数、质因数、分解质因数。
复习能被2,5,3整除的数的特征。从而有目的、有计划的将这部分知识进行了系统整理,使学生对这块知识一目了然。
2.进一步分析概念之间的各种联系,明确概念间的不同关系。从而提高和深化对所学知识的认识:如:约数和倍数与整除的依存关系等。
3.应用概念综合练习。
练习充分,有层次,注意培养学生综合运用知识的能力,充分调动学生学习的积极性,达到巩固知识和提高思维能力的目的。
苏教版六年级数学上册教案6
一、长方体与正方体
第一课时长方体和正方体的认识
教学内容:长方体和正方体的认识
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:教师准备多媒体课件、一个稍大的纸盒及一个有相对的两个面是正方体的纸盒、学生每人准备一个长方体小纸盒、每个小小组准备一个正方体
教学过程:
一、引入新课
1、由平面图形引到立体图形。
出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?
接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。
2、引导学生认识什么是立体图形。
让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?
指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。
问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?
3、举例。
让学生举出日常生活中见过的长方体的物体实例。
师:要知道这些物体为什么都是长方体,就要研究长方体的特征。
二、引导探究
1、出示例1:
(1)拿一个长方体的纸盒来观察:
长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?
指导学生从不同的角度观察学具,回答上面的问题。
(2)抽象图形。
说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。
(师边讲边画长方体的直观图,注意要规范。)
问:实物中长方体的每一个面是什么形?作图时,根据作图的原理除了前面和后面之外,其他各个面都画成了什么形?但实际是什么形?
让学生上去指一指,图上哪3个面是我们能直接看到的?另外3个面在哪里?
2、认识长方体各部分的名称。
(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。
(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。
电脑分别显示面、棱、顶点这三个部分,加深印象。
3、长方体的特征。
出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。
学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。
(1)面的特点
长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?
长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)
(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)
相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)
(2)棱的特点
长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?
如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)
(3)顶点的个数
长方体有几个顶点?你是怎样迅速数出来的?
(4)概括长方体的特征
**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。
**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的`棱可以分为3组,每组4条,相对的棱长度相等。
4、学习长、宽、高
(1)问:相交于同一顶点的3条棱的长度都相等吗?
指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)
(2)学生选择一个长方体实物,量出它的长、宽、高。
5、认识正方体的特征
(1)师:学习了长方体的特征,你们想不想自己来探究正方体的特征?你们准备从哪几个方面进行研究?想用哪些办法来研究?
(2)学生交流后,让他们小小组去探究。
(3)全班交流。
6、讨论长方体和正方体的关系
(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?
明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。
(2)选择一个正方体实物,量出它的棱长。
7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。
三、巩固练习
1、练习一第1题。
看图说出每个长方体的长、宽、高各是多少。
结合第3个图形再说说这个长方体的面的形状有什么特别之处。
2、练习一第2题。让学生说一说。
3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。
明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。
4、练习一第4题。
先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。
5、练习一第5题
学生独立完成后交流。
四、总结
通过这节课的学习,你有什么收获?
师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。
出示:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
五、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
教学后记:
第二课时长方体与正方体的展开图
教学内容:P3例3、“试一试”“练一练”、练习一第6—7题
教学目标:
1、使学生通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。
2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。
教学资源:学生每人准备正方体、长方体纸盒各一个、剪刀
学生按小小组分别准备教科书14页思考题中所需的若干张硬纸(每种6张)教学过程:
一、复习导入
1、说说长方体和正方体的特征。
2、师:这节课,我们要继续研究有关长方体和正方体的知识。
二、自主探究
1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并按照例题所示的步骤进行操作,得到正方体的展开图。
2、把展开图再复原成立体图,再进一步展开、复原,让学生从展开图中找到3组相对的面。
3、让学生独立一剪,并在小组里交流自己得到的展开图,在交流中认识不同的正方体展开图,并思考展开图中的各个面与原来各个面的关系。
4、学生独立完成“试一试”。
拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,先从自己的展开图中找出长方体的3组相对的面,然后在其他同学的不同的展开图中找。最后让学生观察相对的面在不同的展开图上的分布情况,发现其中的规律。
4、“练一练”
第1题让学生在观察展开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将展开图复原成立体图来检验。
第2题
(1)出示各展开图,引导学生先想像把展开图复原成立体图的过程,再判断。
(2)把教科书117页的图形剪下来试着折一折从而验证自己先前的判断是否正确。
三、巩固练习
1、练习一第6题
让学生在仔细观察展开图的基础上作出判断。对于不能围成长方体的图形要说明理由,最后再进行操作验证。
2、先让学生独立思考并进行选择,再通过交流让学生说明选择的根据。
四、思考题
让学生拿出准备好的硬纸,先启发学生思考:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形状和大小有什么关系?再让学生操作。然后说说有没有找到什么规律。
五、总结
通过学习,你有什么收获?想提醒大家注意什么?
苏教版六年级数学上册教案7
一、引
1、引入课题
师:这节课我们一起来探究学习“观察与探究”(板书课题)
2、出示学习目标
本节课我们的学习目标是:(课件出示)
让学生尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。
渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。
二、学加导
师:明确了目标,请同学们借助自学指导来完成目标。
自学指导:自学课本27页,完成所提出的问题,并说说自己的.想法。(先自学4分钟,然后小组交流1分钟。)
(一)学生自学:(先学)
师:好,开始。先自学2分钟,然后小组交流3分钟。
(二)汇报交流:(后教)
小组汇报,全班总结。
三、巩固练习
(一)学生自学:(先学)
(1)长方形面积一定,长与宽成反比例吗?为什么?|
(2)这节课我们用图表表示成反比例的量之间的关系。
用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。
1.观察表格,根据数据在方格纸上画出这8个长方形。
2.把图中的点用平滑的曲线依次连起来。
3.长和宽是怎样变化的?有什么规律?长扩大,宽缩小,相对应的长和宽的乘积是24。
(二)交流订正:(后教)
1.更正
师:学完后,在小组内进行交流。(有错的在小组中说错的原因,不会的优生讲解。)
2.讨论
集体订正。(学困生先说,优生纠正,学困生再说)
四、全课小结
师:同学们这节课已接近尾声,回顾本节课,你有什收获?
苏教版六年级数学上册教案8
教学内容:
P7“回顾与整理”、“练习与应用”第1—4题
教学目标:
1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。
2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。
教学资源:小黑板
教学过程:
一、揭示课题
本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。
二、回顾与整理
1、出示小组讨论题:
(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?
(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。
2、让学生围绕这两个问题进行独立思考。
3、把各自思考的情况在小小组内进行交流。
4、全班交流。
讨论题(1) 可以让学生说说首先要将这样的方程作怎样的'变形,并提醒学生解方程时要养成检验的习惯。
讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。
三、练习与应用
1、解方程
180+6x=330 27x+31x=145 x-0.8x=10
2.2x-1=10 15x÷2=60 4x+x=3.15
(1)让学生独立完成,指名板演。
(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。
2、解决实际问题
(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。
① 武汉长江大桥铁路桥长多少米?
② 武汉长江大桥公路桥长多少米?
xx 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:
武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度
武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度
xx 问:在列方程时应该怎样表示题中的两个未知数量?
(2)练习与应用第3题
xx 先让学生看图后说说了解到了哪些信息。
xx 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?
xx 问:你能说说题中数量之间的相等关系吗?
(学生如有困难,教师可以画线段图帮助学生理清数量关系)
随机板书:
小树原有的高度+6个月长的高度=小树现在的高度
(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?
xx 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。
xx 再让学生独立解答,指名板演。
xx 交流时让学生结合所列的方程说说自己的思考过程。
三、总结:
通过今天的整理与练习,你又有哪些收获?还有什么疑惑?
四、作业:
P7“练习与应用”第2、3题。
苏教版六年级数学上册教案9
教学内容:根据任意方向和距离确定物体的位置
教学目标:
1、通过具体的活动,认识方向与距离对确定位置的作用。
2、能根据任意方向和距离确定物体的位置。
3、发展学生的空间观念。
教学重、难点:
1、能根据任意方向和距离确定物体的位置。
2、对任意角度具体方向的准确描述。
教学过程:
一、设置情景:
如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的?
小组讨论:运用以前学过的'知识得到大致方向。
1、训练加方向标的意识:加个方向标有什么好处?
2、突出以大本营为观测点:为什么把方向标画在大本营?
探究任意方向和距离确定物体的位置。
质疑:
1、知道吐鲁番在大本营的东北方向就可以出发了吗?
2、如果这时就出发可能会发生什么情况?
小组讨论:
沿什么方向走就能保证赛手更准确、更快的找到目的地。
研究时,可以用上你手头的工具。
吐鲁番在大本营东偏北30度
练一练:你说我摆,为小动物安家。
(课前剪好小图片,课上动手操作。)
例:我把熊猫的家安在偏,的方向上。
例:我把熊猫的家安在西偏北30度的方向上,熊猫摆在哪?讨论:为什么猴子的家在西偏南30度,而小兔家在南偏西30度的方向?
解决问题,寻找得出距离的方法。
如果你的赛车每小时行进200千米,你要走几小时能到达考察地?
图上没有直接标距离,你有什么办法解决它呢?
仔细观察地图,你发现了什么?小组试一试解决。
二、练习:
1、以雷达站为观测点,填一填。
护卫舰的位置是偏度,距离雷达站千米。巡洋舰的位置是偏度,距离雷达站千米。鱼雷艇的位置是偏度,距离雷达站千米。
2、以电视塔为观测点,按要求填空。
文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。
三、课后延伸:
游乐场要新建两个游乐项目:一个在观览车西偏北40o方向
上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20o方向上,约150米处。请你在平面图上标出这个新项目的位置。
苏教版六年级数学上册教案10
教学内容:
教材第36页例7、“练一练”,第39页练习六第16~21题,思考题。
教学目标:
1.使学生经历“找乘积是1的两个数”和“找一个数的倒数”的过程,认识和理解倒数的意义,掌握求一个数的倒数的方法。
2.使学生在认识互为倒数的两个数的特点的过程中,发展观察,比较和抽象、概括等思维能力。
教学重点、难点:
理解倒数的意义,学会求一个数的倒数。
教学过程:
一、导入新课
谈话:同学们,“朋友”这个词对我们来说已经非常熟悉了,能说说教室里哪些同学是你的朋友吗?
指名回答。
谈话:在将近六年级学习生活中,很多同学生建立了深厚的友谊,“朋友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积是1,就可以说是这两个数之间的'一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今天要研究的问题。
二、学习新知。
1、理解倒数的意义。
(1)出示例7,学生独立完成。
(2)引出概念。
乘积是1的两个数互为倒数。例如 和 互为倒数。可以说 是 的倒数, 是 的倒数。
引导:请大家仔细观察,刚才我们找出的这些算式有什么共同特点?
学生交流后明确:这些算式里两个数的乘积都是1.
指出:像这样乘积是1的两个数互为倒数。
(3)学生举例来说。进行及时的评议。
(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
小结:倒数不是指一个具体的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互为倒数。
2、归纳方法
(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出 和 的倒数吗?
提问:观察上面互为倒数的各组数,它们的分子和分母位置发生了什么变化,把你的发现与同桌交流。
小组讨论:引导观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
指名回答:找一个分数的倒数只要交换分子、分母的位置。
追问:0有倒数吗?为什么?1呢?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
三、巩固练习。
1、做练习六第17题。
学生分别说出每个数的倒数,并选择几个数说说是怎样想的。
2、做练习六第18题
学生独立宛成,再集体交流,选择两题让学生说说思考的过程。
3、做练习六第19题
练习之前明确要求:观察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边观察。
全班交流结果,板书每组里各数的倒数。
提问:你发现每组数和它们倒数的特点了吗?把你的发现和大家交流。
提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。
4、做思考题。
启发:联系倒数的意义想一想,要使三个分数乘积是1,[板书:( )×( )×( )=1]必段符合什么条件?
引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能在这七个分数里分别找出这样的3个分数吗?试着找找看。
学生先尝试练习,再集体交流。
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
补充习题。
板书计划:
倒数的认识
乘积是1的两个数互为倒数。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
苏教版六年级数学上册教案11
一、说教材
教学目标:
知识和能力:
1.能在方格纸上按要求将图形按一定的比放大或缩小。
2..能在方格纸上准确建立一个点和一个数对得对应。
3..理解图形按相同的比扩大或缩小的实际意义。
过程和方法:结合具体情境,通过观察、操作、思考、交流、展示等活动,体会图形按相同的比扩大或缩小的实际意义。
情感态度和价值观:使学生在研究图形的放缩的过程中,初步感受图形的相似。感受学习比例尺的必要性。欣赏图形的美感。
二、教学过程
(一)创设情境,激趣导入
出示照片:集体照
师:谢老师想把咱们班的集体照放进想框里,怎样把它放进去呢?(复制粘贴)
师:看着这张照片,有什么感觉?
师:是的,生活中有很多缩小和放大的现象,今天我们就一起来研究图形的放大与缩小(投影出示课题:图形的放缩)!
(二)笑脸图大变身
1、初步感受图形的放缩
师:(出示1张贺卡图片)这是一张贺卡,(边说,边操作,得到的三张贺卡)与原来的贺卡相比,怎么样?
生:一样(不一样)。
师:看完之后,你想说点儿什么?你认为哪一张跟原图最像?为什么?(记住和原图比:都是长方形的,是长变了还是宽变了?)
学生小组讨论,发言。
2、深入探究图形的放缩
师:为什么同样的贺卡,在进行了变化之后,有的与原图相像,有的不像呢?接下来我们就来研究这其中的奥秘。(教师出示将方格图照贺卡图片。)
师:请大家认真观察,并结合相关数据思考并分析:谁画得像?为什么?
请代表把你们刚才交流的想法与大家分享。
代表发言,集体指正。
师:看来只有长和宽都按照相同的比来画,才能画得和原图相像。
(说明:教师根据学生的发言适当的板书写出比。)
【设计意图】通过引导学生结合教材中的三幅图研究所画图的长和宽与原图的长和宽有什么关系,让学生体会只有按照相同的比来画,画的图才像。在此过程中,让学生初步感受到比例尺产生的必要性和它的实际意义。让学生在操作活动中领悟图形放缩的规律和奥秘。
(三)画一画
师:有了图形放缩的经验,接下来我们要画一画。拿出自己的作业纸,自由设计图案,并将图形进行一次放大或缩小,画完后,在四人小组里面把你自己画的情况、画的方法向组内同学介绍一下,同时告诉大家你所画的这个图长和宽与原图的长和宽的`比分别是多少。开始吧。(作业纸上分别有长方形、正方形和三角形)
活动后,教师引导学生进行集体展示、反馈。
【设计意图】大胆放手让学生独立完成画图过程,培养了学生灵活的思维能力,提高了学生创造思维的能力。学生在思考中去操作,在操作后再思考,不但形成了技能,而且对图形的放大与缩小有一个完整的认识。
(四)生活中的应用
师:今天我们大家一起研究了图形的放缩,请同学们想一想,你知道日常生活中有哪些地方会应用到图形放缩的知识呢?
【设计意图】让学生感知在生活中,把物体放大或缩小的现象是经常遇到的,学习并运用这些数学知识可以给生活和工作带来很大的方便。
(五)神奇的小猫
师:看来同学们是非常留心生活中的数学,现在,老师要和大家一起到游戏中去体会图形的放缩。(出示探究活动)
师:这是一只名叫乐乐的小猫。根据我们学过的数对的知识,你能将表示小猫乐乐轮廓的点的数对正确的填写出来么?(可尝试标出相应的坐标图,便于找出具体的位置)
教师指名补充表示小猫乐乐轮廓的点的数对。
师:小猫家族中还有三只小猫:天天、晶晶和欢欢,(表格中呈现名称)请你根据具体的要求讲表示它们轮廓的点填写在表格中,并观察数对的规律,猜一猜:哪只小猫最像乐乐?之后通过在方格纸上描点、连线来验证自己的猜测。
学生活动、探索。
汇报展示(说一说你的猜测、依据以及验证结果)。
【设计意图】本环节结合具体的活动和实例,贴近学生的生活经验,设计了“神奇的小猫”的探究活动,通过在方格纸上画小猫图,以及讨论哪只小猫长得更像乐乐,使学生充分的感受到比例尺的广泛应用。
(六)小结
今天我们在活动和游戏中体验了图形的放缩,下课后就请同学们到生活中继续去体验生活中的放大与缩小。
苏教版六年级数学上册教案12
教学目标:
1、知识和能力:能在方格纸上按要求将图形按一定的比放大或缩小。能在方格纸上准确建立一个点和一个数对得对应。理解图形按相同的比扩大或缩小的实际意义。
2、过程和方法:结合具体情境,通过观察、操作、思考、交流、展示等活动,体会图形按相同的比扩大或缩小的实际意义。
3、情感态度和价值观:使学生在研究图形的放缩的过程中,初步感受图形的相似。感受学习比例尺的必要性。欣赏图形的美感。
教学过程:
一、创设情境,激趣导入
出示照片:集体照
师:谢老师想把咱们班的集体照放进想框里,怎样把它放进去呢?(复制粘贴)
师:看着这张照片,有什么感觉?
师:是的,生活中有很多缩小和放大的现象,今天我们就一起来研究图形的放大与缩小(投影出示课题:图形的放缩)!
二、笑脸图大变身
1、初步感受图形的放缩
师:(出示1张贺卡图片)这是一张贺卡,(边说,边操作,得到的三张贺卡)与原来的贺卡相比,怎么样?
生:一样(不一样)。
师:看完之后,你想说点儿什么?你认为哪一张跟原图最像?为什么?(记住和原图比:都是长方形的,是长变了还是宽变了?)
学生小组讨论,发言。
2、深入探究图形的放缩
师:为什么同样的贺卡,在进行了变化之后,有的与原图相像,有的不像呢?接下来我们就来研究这其中的奥秘。(教师出示将方格图照贺卡图片。)
师:请大家认真观察,并结合相关数据思考并分析:谁画得像?为什么?
请代表把你们刚才交流的想法与大家分享。
代表发言,集体指正。
师:看来只有长和宽都按照相同的比来画,才能画得和原图相像。
(说明:教师根据学生的发言适当的板书写出比。)
【设计意图】通过引导学生结合教材中的三幅图研究所画图的长和宽与原图的长和宽有什么关系,让学生体会只有按照相同的比来画,画的'图才像。在此过程中,让学生初步感受到比例尺产生的必要性和它的实际意义。让学生在操作活动中领悟图形放缩的规律和奥秘。
三、画一画
师:有了图形放缩的经验,接下来我们要画一画。拿出自己的作业纸,自由设计图案,并将图形进行一次放大或缩小,画完后,在四人小组里面把你自己画的情况、画的方法向组内同学介绍一下,同时告诉大家你所画的这个图长和宽与原图的长和宽的比分别是多少。开始吧。(作业纸上分别有长方形、正方形和三角形)
活动后,教师引导学生进行集体展示、反馈。
【设计意图】大胆放手让学生独立完成画图过程,培养了学生灵活的思维能力,提高了学生创造思维的能力。学生在思考中去操作,在操作后再思考,不但形成了技能,而且对图形的放大与缩小有一个完整的认识。
四、生活中的应用
师:今天我们大家一起研究了图形的放缩,请同学们想一想,你知道日常生活中有哪些地方会应用到图形放缩的知识呢?
【设计意图】让学生感知在生活中,把物体放大或缩小的现象是经常遇到的,学习并运用这些数学知识可以给生活和工作带来很大的方便。
五、神奇的小猫
师:看来同学们是非常留心生活中的数学,现在,老师要和大家一起到游戏中去体会图形的放缩。(出示探究活动)
师:这是一只名叫乐乐的小猫。根据我们学过的数对的知识,你能将表示小猫乐乐轮廓的点的数对正确的填写出来么?(可尝试标出相应的坐标图,便于找出具体的位置)
教师指名补充表示小猫乐乐轮廓的点的数对。
师:小猫家族中还有三只小猫:天天、晶晶和欢欢,(表格中呈现名称)请你根据具体的要求讲表示它们轮廓的点填写在表格中,并观察数对的规律,猜一猜:哪只小猫最像乐乐?之后通过在方格纸上描点、连线来验证自己的猜测。
学生活动、探索。
汇报展示(说一说你的猜测、依据以及验证结果)。
【设计意图】本环节结合具体的活动和实例,贴近学生的生活经验,设计了“神奇的小猫”的探究活动,通过在方格纸上画小猫图,以及讨论哪只小猫长得更像乐乐,使学生充分的感受到比例尺的广泛应用。
六、小结
今天我们在活动和游戏中体验了图形的放缩,下课后就请同学们到生活中继续去体验生活中的放大与缩小。
苏教版六年级数学上册教案13
教学目标
1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。
2.浸透事物是相互联系、相互转化的辩证唯物主义观点。
教学重点
分数乘以整数的意义及计算方法。
教学难点
分数乘以整数的计算法则的推导。
教具准备
1.自制两套三层复式投影片。
2.投影图片3张。
教学过程设计
(一)复习
(出示投影一)
1.口算:
问:怎样计算?(分母不变分子相加。)
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12+12或125
(2)14+14+14或143
题中的两个式子哪个简便?(125,143)
它们各表示什么意思呢?(5个12是多少? 3个14是多少?)
能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
(二)讲授新课
1.分数乘以整数的意义。
多少块?(投影)
2份。)
听回答,老师边重复边投影(三层复式投影片)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:为什么?(三个加数相同。)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)
师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
(分数乘以整数的'意义与整数乘法的意义相同,就是求几个相同加数
练一练(投影片二)
①看图写算式。
②根据意义列式。
③看算式说意义。
2.分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
①导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)
该怎么办呢?
引导学生讨论得出:
边加上虚线框。)
(2)根据上面方法试算下面各题。
(学生在练习本上做,用投影反馈。)
②归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
③应用法则计算。
有不一样的吗?强调结果化成带分数。
还有不同的做法吗?
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
1.看图写算式。
第3页的第1题,看图写算式。(填书上)
行间巡视,注意:被乘数和乘数的位置。
2.先说算式意义,再填空。
3.看算式,约分计算。
4.口算:
5.判断:(打手势)
(四)课堂总结
今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)
课堂教学设计说明
1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。
2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。
3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。
苏教版六年级数学上册教案14
第一单元 方 程
教学内容:P7“回顾与整理”、“练习与应用”第1—4题
教学目标:
1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。
2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。
教学资源:小黑板
教学过程:
一、揭示课题
本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。
二、回顾与整理
1、出示小组讨论题:
(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?
(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。
2、让学生围绕这两个问题进行独立思考。
3、把各自思考的情况在小小组内进行交流。
4、全班交流。
讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。 讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。
三、练习与应用
1、解方程
180+6x=330 27x+31x=145 x-0.8x=10
2.2x-1=10 15x÷2=60 4x+x=3.15
(1)让学生独立完成,指名板演。
(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。
2、解决实际问题
(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。
① 武汉长江大桥铁路桥长多少米?
② 武汉长江大桥公路桥长多少米?
** 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:
武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度
武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度
** 问:在列方程时应该怎样表示题中的两个未知数量?
(2)练习与应用第3题
** 先让学生看图后说说了解到了哪些信息。
** 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?
** 问:你能说说题中数量之间的相等关系吗?
(学生如有困难,教师可以画线段图帮助学生理清数量关系)
随机板书:
小树原有的高度+6个月长的高度=小树现在的高度
(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的'印刷费是3.6元,学校印制了多少本画册?
** 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。
** 再让学生独立解答,指名板演。
** 交流时让学生结合所列的方程说说自己的思考过程。
三、总结: 通过今天的整理与练习,你又有哪些收获?还有什么疑惑?
四、作业: P7“练习与应用”第2、3题。
苏教版六年级数学上册教案15
教学目标
1.理解一个数乘以分数的意义,明白分数乘以分数的算理,掌握计算法则。
2.能正确地进行分数乘以分数的计算。
3.通过学生全面参与教学过程,培养学生迁移、观察、分析、概括的能力。
教学重点
理解意义,掌握法则。
教学难点
推导计算法则。
教学过程
(一)复习
2.口算下面各题,并说出算式的意义。
(二)导入新课
通过分数乘以整数意义的学习,使我们看到知识之间是有联系的,而且新知识都是在旧知识基础上发展的。今天我们继续研究一个数乘以分数的意义和计算方法。(板书课题)
(三)讲授新课
1.教师逐次出示投影片,引导学生认真观察,正确列出算式,说出算式的意义。
投影:
的3倍是多少。)(板书)
投影:
一半。)
其中的一份。)
师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)
少。)(板书)
投影:
先观察图,然后列式,结合图说出算式意义。(小组讨论)
汇报讨论结果,并板书。
(3)不出示投影图,你自己还想知道多少瓶的重量呀?
分别列式,说意义。
列式?算式的意义是什么?
(5)观察概括:观察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)
论)
汇报讨论结果,并板书:
一个数乘以分数的意义就是求这个数的几分之几是多少?
(6)练习:说说算式意义。
2.推导法则。
我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应该怎样计算呢?
耕地多少公顷?
(把一公顷平均分成2份,取其中一份,是1小时耕的。)
拿出发的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)
①再贴出一张折叠后的结果。
这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)
论,后订正,板书)
分数有什么关系?(原式两分数的分母相乘。)
并计算出结果。
汇报、订正并板书。
贴出在折纸上表示的.结果。
观察:原式和结果分子、分母有什么关系?概括分数乘以分数的计算法则。(讨论、订正)
(分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)
练一练
投影订正三种做法:
比较哪种方法对?哪种方法好?注意:先约分再乘。(板书)
(四)巩固练习
(做本上或投影片上)
1.计算例2中算式的结果。
投影反馈时,强调先约分。
3.第7页,第1题,看图填空。(做书上)
4.先说过程,再说结果:
5.第7页,第4题,列式计算。
6.判断:
(五)课堂总结
这节课我们学了哪些知识?意义是什么?法则是什么?应注意什么?
课堂教学设计说明
这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种能力。教案设计重视学生全面参与教学过程,如在教师的指导下,让学生积极主动地探索意义;用动手折叠、画,讨论等形式推导法则。使学生加深理解。教案中注意扶放结合,如例3第一问,是老师帮助学生学习,掌握分析思路,而第二问则是放开让学生依照第一题的解题思路学生自己列式、画图、说意义、推算结果。总结意义和法则的结论时,都是由感性认识到理性认识,使学生自己得出结论。
【六年级数学上册教案】相关文章:
苏教版六年级数学上册教案09-05
六年级上册数学教学总结11-28
六年级上册数学华体会可以注销账号不 05-02
六年级语文上册名师教案11-04
六年级语文上册《盼》教案10-25
小学六年级上册数学华体会可以注销账号不 08-24
六年级数学上册华体会可以注销账号不 09-23
六年级数学上册教学总结05-09
小学六年级上册数学教学总结03-19