首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>七上整式的加减教案

七上整式的加减教案

时间:2023-11-17 07:25:48 教案 我要投稿
  • 相关推荐

七上整式的加减教案

  作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写呢?下面是小编为大家收集的七上整式的加减教案,仅供参考,希望能够帮助到大家。

七上整式的加减教案

七上整式的加减教案1

  教学目标:

  1.理解同类项的概念,在具体情景中认识同类项.

  2.初步体会数学与人类生活的密切联系.

  教学重点:理解同类项的概念.

  教学难点:根据同类项的概念在多项式中找同类项.

  教学过程:

  一、复习引入

  1.创设问题情境

  (1)5个人+8个人=;?

  (2)5只羊+8只羊=;?

  (3)5个人+8只羊=.?

  2.观察下列各单项式,把你认为类型相同的式子归为一类.

  8x2y, -mn2, 5a, -x2y, 7mn2, 9a, -, 0, 0.4mn2,2xy2.

  由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来.

  要求学生观察归为一类的式子,思考它们有什么共同的特征?

  请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类.

  二、讲授新课

  1.同类项的定义:

  我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.

  像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.

  2.例题:

  例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”.

  (1)3x与3mx是同类项.()

  (2)2ab与-5ab是同类项. ()

  (3)3x2y与-yx2是同类项.()

  (4)5ab2与-2ab2c是同类项. ()

  (5)23与32是同类项.()

  例2】指出下列多项式中的同类项:

  (1)3x-2y+1+3y-2x-5;

  (2)3x2y-2xy2+xy2-yx2.

  例3】k取何值时,3xky与-x2y是同类项?

  例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.

  (1) (s+t)-(s-t)-(s+t)+(s-t);

  (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.

  3.课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?

  三、课时小结

  1.理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项.

  2.这堂课运用到分类思想和整体思想等数学思想方法.

  3.学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础.

  四、课堂作业

  若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是.?

  第2课时合并同类项

  教学目的:

  1.理解合并同类项的概念,掌握合并同类项的法则.

  2.渗透分类和类比的思想方法.

  教学重点:正确合并同类项.

  教学难点:找出同类项并正确地合并.

  教学过程:

  一、复习引入

  为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:

  1.他们两次共买了多少本软面抄和多少支水笔?

  2.若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?

  二、讲授新课

  1.合并同类项的定义:

  (学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.

  由此可得:把多项式中的同类项合并成一项,叫做合并同类项.(板书:合并同类项.)

  2.例题:

  例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.

  根据以上合并同类项的实例,让学生讨论、归纳,得出合并同类项的法则:

  把同类项的系数相加,所得的`结果作为系数,字母和字母指数保持不变.

  例2】下列各题合并同类项的结果对不对?若不对,请改正.

  (1)2x2+3x2=5x4;(2)3x+2y=5xy;

  (3)7x2-3x2=4; (4)9a2b-9ba2=0.

  例3】合并下列多项式中的同类项:

  (1)2a2b-3a2b+0.5a2b;

  (2)a3-a2b+ab2+a2b-ab2+b3;

  (3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.

  (用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出.其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数.)

  例4】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.

  试一试把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?

  (通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便.)

  3.课堂练习:课本p65练习第1,2,3题.

  三、课时小结

  1.要牢记法则,熟练正确地合并同类项,以防止出现类似2x2+3x2=5x4的错误.

  2.从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项.

  四、课堂作业

  课本p69习题2.2的第1题.

  第3课时去括号

  教学目标:

  1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

  2.经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  教学重点:准确应用去括号法则将整式化简.

  教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误.

七上整式的加减教案2

  ?第一部分】知识点分布

  1、 一元一次方程的解(重点)

  2、 一元一次方程的应用(难点)

  3、 求解一元一次方程及其在实际问题中的应用(考点)

  ?第二部分】关于一元一次方程

  一、一元一次方程

  (1)含有未知数的等式是方程。

  (2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

  (3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  (4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

  (5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

  (6)求方程的解的过程,叫做解方程。

  二、等式的性质

  (1)用等号“=”表示相等关系的式子叫做等式。

  (2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  ?第一部分】知识点分布

  1、 一元一次方程的解(重点)

  2、 一元一次方程的应用(难点)

  3、 求解一元一次方程及其在实际问题中的应用(考点)

  ?第二部分】关于一元一次方程

  一、一元一次方程

  (1)含有未知数的等式是方程。

  (2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

  (3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  (4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

  (5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

  (6)求方程的解的过程,叫做解方程。

  二、等式的性质

  (1)用等号“=”表示相等关系的式子叫做等式。

  (2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  如果a=b,那么a±c=b±c.

  (3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  如果a=b,那么ac=bc;

  如果a=b且c≠0,那么

  (4)运用等式的性质时要注意三点:

  ①等式两边都要参加运算,并且是作同一种运算;

  ②等式两边加或减,乘或除以的'数一定是同一个数或同一个式子;

  ③等式两边不能都除以0,即0不能作除数或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同类项与移项

  (1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

  (2)把等式一边的某项变号后移到另一边,叫做移项。

  (3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

  2、解一元一次方程——去括号与去分母

  (1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

  (2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  (3)工作总量=工作效率×工作时间。

  (4)工作量=人均效率×人数×时间。

  四、实际问题与一元一次方程

  (1)售价指商品卖出去时的的实际售价。

  (2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

  (3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

  (4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

  (5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

  (6)产油量=油菜籽亩产量×含油率×种植面积。

  (7)应用:行程问题:路程=时间×速度;

  工程问题:工作总量=工作效率×时间;

  储蓄利润问题:利息=本金×利率×时间;

  本息和=本金+利息。

  (4)运用等式的性质时要注意三点:

  ①等式两边都要参加运算,并且是作同一种运算;

  ②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

  ③等式两边不能都除以0,即0不能作除数或分母。

  三、一元一次方程的解

  1、解一元一次方程——合并同类项与移项

  (1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

  (2)把等式一边的某项变号后移到另一边,叫做移项。

  (3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

  2、解一元一次方程——去括号与去分母

  (1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

  (2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  (3)工作总量=工作效率×工作时间。

  (4)工作量=人均效率×人数×时间。

  四、实际问题与一元一次方程

  (1)售价指商品卖出去时的的实际售价。

  (2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

  (3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

  (4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

  (5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

  (6)产油量=油菜籽亩产量×含油率×种植面积。

  (7)应用:行程问题:路程=时间×速度;

  工程问题:工作总量=工作效率×时间;

  储蓄利润问题:利息=本金×利率×时间;

  本息和=本金+利息。

七上整式的加减教案3

  教材分析:

  解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

  设计思路:

  数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

  复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

  巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

  作业布置、反馈情况。

  教学目标:

  1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

  3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

  教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

  教学难点:分析实际问题中的相等关系,列出方程。

  教学方法:先学后教,当堂训练。

  教学准备:多媒体课件等。

  预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

  教学过程:

  一、准备阶段:

  1、知识回顾:

  (1)、用合并同类项的方法解一元一次方程的步骤是什么?

  (2)、解下列方程:

  ① -3·-2·=10 ②

  2、创设问题情境,导入新课。

  问题:

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  如何解决这个问题呢?

  二、导学阶段:

  (一)、出示本节课的学习目标:

  1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

  2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  (二)、合作交流,探究新知

  1、分析解决课前提出的问题。

  问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  分析: 设这个班有·名学生.

  每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

  每人分4本,需要______本,减去缺的25本,这批书共____________本.

  这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

  这批书的总数是一个定值,表示它的两个式子应相等,即表示同一个量的两个不同的式子相等.

  根据这一相等关系列得方程:

  方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

  方法过程:

  2、总结移项的概念。

  像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

  3、思考:上面解方程中“移项”起到了什么作用?

  4、例题学习

  运用移项的方法解下列方程:

  三、课堂练习:

  运用移项的方法解下列方程:

  四、课堂小结:

  本节课,我们学习了哪些知识?你还有哪些困惑?

  五、达标测试:

  运用移项的`方法解下列方程:(25′×4=100′)

  六、预习作业:

  1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

  第一课时

  平面图形的认识

  教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。squo;

  教学过程:

  直线、射线、线段。

  提问:1)分别说一说什么叫直线、射线、线段?

  直线、射线和线段有什么区别?

  完成123页上面的“做一做”。(同学笔做)

  角

  提问:1)什么叫做角?

  2)角的大小与什么有关?

  整理:把表中的空格填写完整。

  完成123页下面“做一做”的1题、2题。

  锐角

  直角

  钝角

  平角

  周角

  大于0°

  小于90°

  垂直与平行

  提问:

  1)在同一平面内,两条直线的相互位置有哪几种情况?

  2)什么样的两条直线叫做互相垂直?

  什么样的两条直线叫做互相平行?

  回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

  完成教材124页的“做一做”

  三角形。

  提问:

  1)什么叫做三角形?

  2)在下面的三角形中,顶点a的对边是指哪一条边?

  先笔做:以顶点a的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

  在下面的表中填写三角形的名称和各自的特征。

  名称

  图形

  特征

  回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

  四边形

  提问:什么叫四边形?

  回答:看图说出下面各图的特点,再说一说图中各字母表示什么

  想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

  完成125页“做一做”中的1、2题。

【七上整式的加减教案】相关文章:

整式的加减 01-01

整式的加减 15篇06-24

整式的加减复习课 (通用16篇)08-07

整式 01-26

整式的除法 04-23

《整式的除法》 05-14

整式的乘法 03-27

关于整式的 11-23

生物七年级上教案10-11

Baidu
map