首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>有理数的乘方教案优秀

有理数的乘方教案优秀

时间:2023-11-21 08:25:07 教案 我要投稿
  • 相关推荐

有理数的乘方教案优秀

  作为一名人民教师,通常需要准备好一份教案,教案是教学活动的依据,有着重要的地位。那么什么样的教案才是好的呢?以下是小编为大家整理的有理数的乘方教案优秀,欢迎阅读与收藏。

有理数的乘方教案优秀

有理数的乘方教案优秀1

  一、知识与技能

  (1)正确理解乘方、幂、指数、底数等概念。

  (2)会进行有理数乘方的运算。

  二、过程与方法

  通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

  三、情感态度与价值观

  培养探索精神,体验小组交流、合作学习的重要性。

  教学重、难点与关键

  1、重点:正确理解乘方的意义,掌握乘方运算法则。

  2、难点:正确理解乘方、底数、指数的概念,并合理运算。

  3、关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

  四、课堂引入

  1、几个不等于零的有理数相乘,积的符号是怎样确定的?

  几个不等于零的有理数相乘,积的符号由负因数的`个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

  2、正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

  五、新授

  边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.

  aa简记作a2,读作a的平方(或二次方)。

  aaa简记作a3,读作a的立方(或三次方)。

  一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

有理数的乘方教案优秀2

  教学目标:

  1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.

  2、能力目标:会解决与科学记数法有关的实际问题.

  3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.

  教学重点与难点:

  教学重点:

  会用科学记数法表示大于10的数.

  教学难点:

  正确使用科学记数法表示数.

  教学过程:

 一、科学记数法

  用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:

  太阳的半径约696000千米

  富士山可能爆发,这将造成至少25000亿日元的损失

  光的速度大约是300000000米/秒;

  全世界人口数大约是6100000000.

  这样的大数,读、写都不方便,考虑到10的乘方有如下特点:

  102 = 100,103 = 1000,104 = 10000,?

  一般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如,6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]

  像上面这样把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的`数,这种记数法叫做科学记数法.

  科学记数法也就是把一个数表示成a×10n的形式,其中1≤a的绝对值<10的数,n的值等于整数部分的位数减1.

  二、例题

  例1、用科学记数法记出下列各数:

  (1)1000000;(2)57000000;(3)123000000000

  解:(1)1000000 = 1×106

  (2)57000000 = 5.7×107

  (3)123000000000 = 1.23×1011.

  用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.

  注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.说明:在实际生活中有非常大的数,同样也有非常小的数.本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米=109米1,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一.用表达式表示为1米=109纳米,或者1纳米=米=米.

  三、课堂练习

  1.用科学记数法记出下列各数.

  (1)30060;(2)15400000;(3)123000.

  2.下列用科学记数法记出的数,原来各是什么数?

  (1)2×105;(2)7.12×103;(3)8.5×106.

  3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.

  4.把199 000 000用科学记数法写成1.99×10n3的形式,求n的值.

  课堂练习答案

  1.(1)3.006×104;(2)1.54×107;(3)1.23×105.

  2.(1)100000;(2)7120;(3)8500000.

  3.3.5×1010mm.

  4.n的值为11.

有理数的乘方教案优秀3

  教学目标

  1、利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

  2、能将用科学记数法表示的数还原为原数。(重点)

  教学过程

一、情境导入

  在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多。

  如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”。即约为“70000000000000000000000”颗。

  生活中,我们还常会遇到一些比较大的数。例如:

  1、据报载,20xx年我国将发展固定宽带接入新用户25000000户。

  2、全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽。

  3、拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克。

  像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

  二、合作探究

  探究点一:用科学记数法表示大数

  例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()

  A.167×103 B.16.7×104

  C.1.67×105 D.1.6710×106

  解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定。167000=1.67×105,故选C.

  方法总结:科学记数法的表示形式为a×10n,其中1≤|a|

  例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名。噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元。把934千万元用科学记数法表示为______元()

  A.9.34×102 B.0.934×103

  C.9.34×109 D.9.34×1010

  解析:934千万=9340000000=9.34×109.故选C.

  方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示。

  探究点二:将用科学记数法表示的数转换为原数

  例3已知下列用科学记数法表示的数,写出原来的数:

  (1)2.01×104;(2)6.070×105;(3)-3×103.

  解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可。

  解:(1)2.01×104=20100;

  (2)6.070×105=607000;

  (3)-3×103=-3000.

  方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数。

  三、板书设计

  科学记数法:

  (1)把大于10的数表示成a×10n的`形式。

  (2)a的范围是1≤|a|

  (3)n比原数的整数位数少1.

  

  本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动。把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现。

【有理数的乘方教案优秀】相关文章:

有理数的乘方 05-12

有理数乘方 04-22

有理数乘方的 04-22

有理数的乘方 15篇03-31

有理数的减法教案11-03

幂的乘方 04-19

《积的乘方》 03-21

积的乘方 12-13

积的乘方 8篇02-20

Baidu
map