首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>沪教版三年级下册《组合图形的面积》数学教案

沪教版三年级下册《组合图形的面积》数学教案

时间:2024-01-17 14:22:39 教案 我要投稿
  • 相关推荐

沪教版三年级下册《组合图形的面积》数学教案

  作为一名优秀的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。怎样写教案才更能起到其作用呢?下面是小编整理的沪教版三年级下册《组合图形的面积》数学教案,欢迎阅读,希望大家能够喜欢。

沪教版三年级下册《组合图形的面积》数学教案

  教学内容:教科书第6页

  教学目标:

  1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。

  2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。

  3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。

  教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。

  教学准备:简单图形的纸片、剪刀、多媒体课件

  教学过程

  一、复习引入

  1、课件出示:长方形和正方形。

  师:这是我们学过的长方形和正方形。

  师:现在要求它们的面积必须知道什么呢?

  生:要知道长方形的长和宽,以及正方形的边长。

  2、标上相应尺寸。

  师:求图形的面积必须要有相应的尺寸,请看!课件出示:

  师:现在能算了吗?左右同学各口算一题。

  生汇报:长方形的面积=长×宽

  =10×5

  =50(dm2)

  正方形的面积=边长×边长

  =4×4

  =16(dm2)

  [复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]

  二、新知探究

  1、把引入部分的长方形和正方形合二为一

  课件出示:

  师:这个图形是由我们学过的图形组合而成的,这样的图形叫组合图形。(出示部分课题:组合图形)

  2、课件出示一些组合图形。

  让学生仔细观察图形的特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。

  图①

  图②

  图③

  学生可能有其它想法,教师根据学生汇报后小结。

  3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。

  [这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]

  4、组合图形的面积计算

  (1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合

  图形的面积。(将课题补充完整)组合图形的面积 课件出示:

  瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。

  (2)小组合作、动手操作、并汇报

  师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。

  *第五种

  移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据

  =(8+2)×3 相等。也就是说通过“移”的方法能将原来的

  =10×3 图形转化成我们学过的简单图形。

  =30(m2)

  * 第六种

  分割成5块长为3cm,宽为2cm的长方形。

  3×2×5

  =6×5

  =30(m2)

  (第五、第六种可视班级情况进行教学。重在培养学生的数感。)

  (3)小结:

  ①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形

  来计算,先割后加,先补后减。

  ②分割的图形尽量要少。

  ③我们无论用“割”或“补”的方法,关键必须找到相应的尺寸。

  [通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]

  三、及时练习

  1、课件出示小胖家的平面图:

  小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。

  2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)

  [除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]

  [让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]

  四、总结

  师:通过今天的学习,你有什么收获呢?

  五、作业设计

  求下面组合图形的面积

  六、教后反思

【沪教版三年级下册《组合图形的面积》数学教案】相关文章:

《组合图形的面积》数学教案11-24

《组合图形面积》说课稿03-01

组合图形面积的教学设计05-12

《组合图形的面积》 04-03

《组合图形面积的计算》 02-23

《简单组合图形的面积》 03-27

《组合图形面积》教学设计范文01-27

沪教版三年级上册《长方形与正方形的面积2》数学教案01-17

沪教版四年级下册《平行线之间的距离》数学教案01-17

Baidu
map