首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>平行四边形教案优秀

平行四边形教案优秀

时间:2024-03-09 06:58:47 教案 我要投稿
  • 相关推荐

平行四边形教案优秀

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写才好呢?以下是小编为大家收集的平行四边形教案优秀,欢迎阅读与收藏。

平行四边形教案优秀

平行四边形教案优秀1

  学习目标:

  1、理解并掌握平行四边形的定义

  2、掌握平行四边形的性质定理1及性质定理2

  3、提高综合运用知识的能力

  预习指导:

  1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。

  2、____________________________________是平行四边形。

  3、平行四边形的性质是:_________________________________________.

  学习过程:

  一、学习新知

  1、平行四边形的定义

  (1)定义:________________ ________________________叫做平行四边形。

  (2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

  (3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,

  反过来,平行四边形就一定具有性质。

  (4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.

  2、平行四边形的性质

  平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

  已知:如图 ABCD,

  求证:AB=CD,CB=AD.

  分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.

  证明:

  总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。

  在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。

  证明:

  通过上面的证明,我们得到了:

  平行四边形的性质定理1是_______________________________________.

  平行四边形的性质定理2是_______________________________________.

  二、应用举例:

  例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。

  例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。

  三、随堂练习

  1.平行四边形的两邻边的'比是2:5,周长为28cm,求四边形的各边的长。

  2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。

  四、课堂小结 :

  1、平行四边形的概念。

  2、平行四边形的性质定理及其应用。

  五、当堂检测

  1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).

  (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是

  2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,

  EF与GH相交与点O,那么图中的平行四边形一共有( ).

  (A)4个 (B)5个 (C)8个 (D)9个

  3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

平行四边形教案优秀2

  【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

  【教学目标】

  1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

  2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

  3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

  4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

  5.了解平行四边形在生活中的应用。

  【教学重、难点】

  教学重点:认识平行四边形及其特征。

  教学难点:自己探索、发现、描述、应用平行四边形的特征。

  【教学准备】

  教具:课件,长方形、三角形活动框,磁性小棒。

  学具:三角板,量角器,直尺,平行四边形

  纸片(4人小组相同),小棒4根(两两等长)。

  【教学过程】

  一、 导入新课

  1. 目标导学。

  (1) 什么是平行四边形?

  (2) 平行四边形有什么特征?

  (3) 长方形、正方形是平行四边形吗?

  (4) 你能用平行四边形的特征解决简单的数学问题吗?

  (5) 平行四边形在生活中有哪些应用?

  2. 活动引入,发挥想象。摆小棒游。

  学生在桌子上任意摆1根、2根、3根、4根小棒,想一想,你会摆出哪些我们学过的形状?同桌交流,说一说自己摆的是什么形状。

  [同一平面内,学生用小棒可能会摆出线段、角、相交(垂直)、平行、三角形、任意四边形、长方形、正方形或平行四边形等。

  3.揭示课题,激发兴趣。]

  在同一个平面内,用两根小棒可以摆角、平行线和垂线,用3根小棒可以围成三角形,那么用4根小棒就可以围成四边形。

  长方形、正方形、平行四边形都有4条边,所以称为四边形。长方形和正方形同学们非常熟悉,而对于平行四边形却比较陌生,今天我们就一起来研究平行四边形的特征。

  [学生已认识了平行和垂直,掌握了长方形、正方形、三角形的特征。通过富有挑战性的摆小棒活动,既能激发学生的想象力和求知欲,又能唤起对旧知识的回忆,使学生在研究图形特征时,自觉将视角引入边、角及平行和垂直等问题中。]

  二、探究新知识

  1.教学例1,认识平行四边形的静态特征。

  (1)联系实例,初步感知。

  (出示例1)平行四边形在生活中应用广泛。仔细观察屏幕,你能在这些物体上找出平行四边形吗?

  学生边指边说抽象出实物中的平行四边形。

  (2)思考:平行四边形一样吗?哪里不一样?(大小、边的长度、平行线的倾斜方向、角度等不一样。)

  为什么我们都叫它们平行四边形呢?

  什么是平行四边形?有两组对边分别平行的四边形。

  2.探究平行四边形的特征

  (1)经验迁移,学法指导。

  它们除了两组对边分别平行,还有什么共同的特征呢?前面认识三角形时,同学们已经有了一些学习图形的经验,如果老师让你们自己去寻找平行四边形的特征,你准备从哪些方面去研究?(边和角,数和量……)

  学习几何图形,就要抓住图形的关键部分,用眼看一看,动手做一做,用脑想一想,才能发现它们的特征。

  (2)小组合作,自主探究。

  ①请拿出你们准备的平行四边形纸片,4人小组合作,用前面学习图形的方法,去寻找平行四边形的特征,可以在图片上适当标注,然后结合数据在小组内说一说你的发现。

  ②全班交流,引导认识。

  你们发现了平行四边形的哪些特征?你们是通过什么方法发现的?

  预设1:平行四边形有4个角、4条边,我们是通过看和数发现的。

  预设2:平行四边形两条长边一样长,两条短边一样长,我们是用直尺量的.。

  预设3:平行四边形两条长边互相平行,两条短边也互相平行,我们是用三角板和直尺验证了的。

  预设4:平行四边形对角相等,我们是用量角器量的。

  小结:平行四边形的两组对边平行且相等,对角相等。

  [通过观察、动手、动脑、看、数、量、议等活动、归纳总结,发挥了学生的主观能动性。]

  3.教学例2,认识平行四边形的动态特征。

  同学们真能干!大家团结协作,采用多种方法、多种手段找到了平行四边形的一些特征,并通过相互交流,验证了平行四边形这些特征的科学性。不过,平行四边形还有些特征不容易被发现,你们想知道吗?

  (1)感知平行四边形“容易变形”的特性。

  老师拿出长方形活动框。这是一个像孙悟空一样会变的平行四边形,像老师这样捏住它的两个对角,向相反方向拉动,它会听你们的话。

  我们用同样的方法再来拉一拉三角形活动框,它会听你们的话吗?在拉动的过程中,你发现了平行四边形的什么奥秘?(三角形具有稳定性,不容易变形;平行四边形不稳定,很容易变形。)

  拉动过程中,什么变了?什么没变?(边长没变,角度变了,两条边的距离变了)

  平行四边形“容易变形”的特性在生活中也有很大的用处。(课件演示:升降机、伸缩门工作等。)

  (2)理解长方形、正方形与平行四边形的联系。

  ①拉动平行四边形当拉成4个直角时就变成长方形了

  ②平行四边形和长方形有什么相同和不同的地方?长方形是不是平行四边形呢?同桌讨论一下。

  预设1:长方形和平行四边形的相同点都是两组对边都分别平

  行,说明长方形也具有平行四边形的特征,它是平行四边形。

  预设2:它们的不同点是长方形4个角都是直角,所以我认为长方形是特殊的平行四边形。

  ③那正方形又是不是平行四边形呢?

  预设3:正方形也有两组对边分别平行,所以它也属于平行四边形。同时,它还具有4个角都是直角、4条边都相等的特征,所以它还是特殊的长方形。

  ④原来平行四边形在特殊情况下也能变成长方形或正方形,所以我们说,长方形和正方形是特殊的平行四边形

  ⑤小结:在研究图形的过程中,我们要学会比一比、议一议,在变化中寻找图形隐藏的特征,发现图形之间的联系和区别。

  [通过“拉一拉”的操作活动,引领学生感悟平行四边形“易变形”的特性,理解长方形、正方形与平行四边形的联系,注重学生经验的迁移和教学方法的引导,有利于培养学生数学思考的条理性和逻辑性。]

  三、巩固练习,加深认识

  1.练习十九第1题。

  引导学生遮一遮,比画比画,结合特征寻找图形。

  2.练习十九第3,4题。

  学生独立做,交流做法,说一说是怎样想的。

  3. 开放练习,拓展思维

  4. 学校花匠准备在花园里栽4株花,并希望这4株花能围成一个平行四边形,他已经栽了3株,请你想一想第4株花可以栽在哪里。

  [练习由直观操作题到抽象的图形思维题,都紧紧抓住了平行四边形的特征去思考,由简到难,逐步拓展,由学生独立完成到教师引领,层层推进,较好地检验了学生应用新知识解决简单问题的能力。]

  五、回顾梳理,总结反思

  解决目标导学5个问题

  你还有哪些补充?

  六、拓展升华

  用两个三角形摆一个平行四边形。

平行四边形教案优秀3

  本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇你知道吗介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。

  1、 让学生通过做图形发现平行四边形和梯形的特点。

  《标准》要求学生通过观察、操作,认识平行四边形和梯形。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅靠接受。

  (1) 第43页例题要求学生凭已有的直观认识想办法做一个平行四边形,他们做的方法一定很多,教材里呈现的只是其中的一部分,很可能还有别的做法。做图形的目的是体会平行四边形的特点,教学时要注意四点:

  ① 课前要有充分的物质准备,如小棒、钉子板、方格纸这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。

  ② 在做中发现特征,要让学生说说做的体会。做图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行

  ③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。

  两组对边分别平行是平行四边形的.本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。

  ④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己做的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。

  (2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。想想做做第3、4题都是把一个平行四边形通过分移拼的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。

  (3) 第一次教学梯形,先让学生观察屋顶的一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过做梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是白菜卡通的提问方式变了,不是问梯形有什么特点,而是问梯形与平行四边形比较,有什么区别;二是多了辣椒卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。

  学生有想办法做出一个平行四边形的活动体验,现在做一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。

  2、 精心设计高的教学。

  四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。

  (1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。

  第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的垂直线段。

  试一试的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。

  (2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,试一试里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。

平行四边形教案优秀4

  《平行四边形的面积》说课稿

  各位评委,你们好!

  我说课的题目是《平行四边形的面积》,我准备从说教材,说教法、学法,说教学过程三个部分完成说课。

  一、说教材。

  《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了平行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。

  根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为:

  1、知识目标:能应用公式计算平行四边形的面积;

  2、能力目标:理解推导平行四边形面积计算公式的过程,培养学生抽象概括的能力。

  3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。

  根据新课程标准中的教学内容和学生的认知能力,我将本节课的。教学重点定为:

  能应用公式计算平行四边形的面积。

  教学难点定为:理解平行四边形面积的推导过程,并能运用公式解决实际问题。

  二、说教法、学法。

  根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:

  1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学

  习数学的兴趣和积极思维的动机,引导学生主动地探索。

  2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。

  3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积计算方法,提高学生的思维能力。

  4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。

  三、说教学过程。

  第一环节:创设情境、激趣导入。

  通过创设情境:小兔乐乐想从三快草地中,找一块面积最大的'草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出平行四边形草地的面积。

  这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。

  第二环节:活动探究,获取新知。

  学生独立思考,动手操作,尝试用不同方法计算平行四边形的面积。根据这些方法,展开其中的割补法,通过转化—找关系—推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出平行四边形面积的计算公式。

  这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。

  第三环节:练习应用,巩固提高。

  课后练习和一些变式的习题。

  紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。

  第四环节:联系生活,深化应用。

  让学生做应用题。

  这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。

  作业:

  自编一道有关平行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。

  总结:

  总结内容主要让学生清楚:要求平行四边形的面积,必须知道它的底和高或量出底和高。

  板书设计:

平行四边形教案优秀5

  一、说教材

  认识平行四边形这节课是在学生已经直观认识平行四边形,初步掌握了长方形、正方形、三角形的特征,认识了平行与相交的基础上,通过一系列的探究实践活动继续认识平行四边形,了解对边分别平行和对边相等的特征。这部分的内容是以后学习平行四边形面积的基础,有利于提高学生的动手能力,增强创新意识,进一步发展学生对“空间与图形”的学习兴趣。

  二、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达、动脑思考等方式探究新知。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,在探索中感受成功的乐趣。

  三、说教学重难点

  进一步认识平行四边形,发现平行四边形的基本特征。

  四、说教法和学法

  (一)说教法

  根据本节课的教材内容特点,为了更有效的突出重点,突破难点,按照学生的`认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,(多媒体演示法为辅,教学适时运用电教媒体化静为动),激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  (二)说学法

  1、根据自主性和差异性原则,让学生“观察猜想概括验证交流应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。

  2、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

  五、说教具和学具准备

  教具:(教学课件)三角形框架、长方形框架、正方形框架。

  学具:以小组为单位准备5cm、10cm、15cm、20cm不等的纸条,大头钉。

  六、说教学过程

  (一)猜图游戏,激趣导入。

  谈话:同学们喜欢玩游戏吗?我们在上课之前玩一个猜图游戏。

  (设计意图:通过猜图游戏活动,让学生对以前学过的知识印象更深。)

  (二)联系生活,初步感知

  寻找我们身边、生活中的平行四边形。

  (设计意图:《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。)

  (三)学生自主探究

  1、在点子图上画,利用纸条自己做。

  (设计意图:这个环节的设计,本着学生为主体的思想,敢于放手,既体现了教师的导和学安生的学,又培养了动手、动脑能力,让学生的多种感官参与活动,让学生在操作中初步体验平行四边形的一些特点。)

  2、借助手中的材料研究平行四边形的特点

  以小组为单位,观察制作出来的平行四边形,研究其特征。

  根据平行四边行的特点判断一个四边形是不是平行四边形。出示“想想做做”第一题让学生判断。提问:为什么第2个图形不是平行四边形?

  (设计意图:这个环节的设计给学生提供了充分的自主探索的空间,引导学生利用手中材料选择感兴趣的自己去发现和交流,使学生在思维的碰撞和交流中得出结论。)

  七、全课总结

  (设计意图:让学生从小养成对所学知识进行归纳、整理、总结。)

平行四边形教案优秀6

  1.引导学生通过观察、讨论感知生活中的平行现象。

  2.帮助学生初步理解平行是同一平面内两条直线的位置关系,初步认识平行线。

  3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

  [教学重点]正确理解“同一平面内 ”“互相平行”等概念,发展学生的空间想象能力。

  [教学难点]画平行线

  [教具、学具准备]课件,水彩笔,尺子,三角板,小棒。

  [教学过程]

  一、创境引入,观察发现

  生开窗户。

  开窗户过程中,这扇窗户在做什么运动呢?

  是的,平移是我们上个学期学过的知识,你们学得很好。我们看,窗户的一条边一开始在这个位置;平移之后,到了这个位置。你知道这条边与这条边的位置之间有什么关系吗?

  这节课就让我们一起来学习平行线。

  老师这里有几幅图,请同学们找一找,哪些图画出了你心目中的平行线?

  看来,同学们对平行线都有自己的'认识。到底你的想法对不对呢?,学完这节课后,相信你一定能得到一个肯定的答案。

  二、积极参与,探究感受

  窗户这两条直直的边我们可以看成是两条线段,这条线段如果向两端无限延伸、延伸。闭上眼睛想象一下,你看到的两条直线会怎样?会相交吗?

  师:都说眼见为实,这两条直线我看到的部分的确是不相交的,可是无限延伸之后我看不到,你凭什么说他们永远不会相交呢?

  宽度一样,其实就是说他们的距离处处相等。(课件验证)

  因为他们的距离处处相等,无限延伸之后始终保持着这样的距离,所以,他们永远不会相交。

  (板书并口述:永不相交的两条直线相互平行)

  两条直线相互平行,我们也可以说其中一条就是另一条的平行线。

  如果我们把两条直线分别标上名字,ab和cd,我们就说直线ab平行于直线cd.

  我现在如果把这两条直线都斜过来,现在他们相互平行吗?为什么?

  生活中的平行线

  这些直线是相互平行的,生活中你还能找到这样的平行线吗?

  看来生活中的平行线还真不少。有个小朋友叫淘气,他发现所有的窗户都太像了,没有一点儿创意。于是,他设计了这样的新型窗户。

  你能接受淘气的设计吗?为什么?

  刚才同学们找到的都是静止的,现在让我们看看运动中的平行线。

  每周一我们都要举行升国旗仪式。国旗的上边从这里平移到了这里,他们是相互平行的。

  再看看这副图。箭头从这里平移到这里。同学们,线段 hg一开始在这里,平移后到了h1g1,线段hg和线段h1g1平行吗?那你能从平移前后的箭头中,找出类似的相互平行的线段吗?

  画平行线

  教师演示三角尺平移法,注意点:1、对 2、靠 3、移 4、画

  学生画。

  三、运用知识,解决问题

  四、课堂总结,概括新知

  学了这节课后,你对平行线有什么新的认识吗?

  随着学习的不断深入,我们对平行的认识也会越来越深刻。

平行四边形教案优秀7

  教学目的:

  1、深入了解平行四边形的不稳定性;

  2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

  3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

  4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

  教学重点:

  平行四边形的性质和判定。

  教学难点:

  性质、判定定理的运用。

  教学程序:

  一、复习创情导入

  平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  二、授新

  1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

  2、自学质疑:自学课本P79-82页,并提出疑难问题。

  3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

  4、反馈归纳:根据预习和讨论的.效果,进行点拨指导。

  5、尝试练习:完成习题,解答疑难。

  6、深化创新:平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  7、推荐作业

  1、熟记“归纳整理的内容”;

  2、完成《练习卷》;

  3、预习:(1)矩形的定义?

  (2)矩形的性质定理1、2及其推论的内容是什么?

  (3)怎样证明?

  (4)例1的解答过程中,运用哪些性质?

  思考题

  1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

  跟踪练习

  1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

  2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

  3、下列条件中,能够判断一个四边形是平行四边形的是( )

  (A)一组对角相等; (B)对角线相等;

  (C)两条邻边相等; (D)对角线互相平分。

  创新练习

  已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

  达标练习

  1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

  2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

  综合应用练习

  1、下列条件中,能做出平行四边形的是( )

  (A)两边分别是4和5,一对角线为10;

  (B)一边为4,两条对角线分别为2和5;

  (C)一角为600,过此角的对角线为3,一边为4;

  (D)两条对角线分别为3和5,他们所夹的锐角为450。

  推荐作业

  1、熟记“判定定理3”;

  2、完成《练习卷》;

  3、预习:

  (1)“平行四边形的判定定理4”的内容 是什么?

  (2)怎样证明?还有没有其它证明方法?

  (3)例4、例5还有哪些证明方法?

平行四边形教案优秀8

  教学目标

  1.使学生掌握的意义及特征,了解其特性,能够正确画出底所对应的高。

  2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念。

  教学重点

  掌握平行四边形的意义及特征。

  教学难点

  理解平行四边形的底和高。

  教学过程

 一、复习准备。

  我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

  在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形。

  教师提问:我们学过哪些四边形呢?

  学生举例。

  说说哪些物体表面是平行四边形?

  教师出示下图,让学生初步感知平行四边形。

 二、学习新课。

  1.理解平行四边形的意义。

  首先出示一组图形。

  教师提问:这些图形是什么形?它们有什么特征?

  (1)看到这个名称你能想到什么?(板书:平行、四边形)

  教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

  (2)动手测量。

  指名到黑板上用三角板检验一下,每个图形的对边怎样。

  (3)抽象概括。

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义。(板书:两组对边分别平行的四边形叫做平行四边形。)

  教师强调说明:只要四边形每组对边分别平行就能确定它的`两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”。

  (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

  2.平行四边形的特征和特性。

  (1)教师演示。

  教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。

  (2)动手操作。

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。

  (3)归纳平行四边形特性。

  (4)对比。

  三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。

  3.学习平行四形的底和高。

  (1)认识平行四边形的底和高。

  教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。这条对边叫做平行四边形的底。

  (2)找出相应的底和高。【继续演示课件“平行四边形”】

  引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

  使学生明确:从b点画高,它的底是cd;从d点画高,它的底是bc.

  (3)画平行四边形的高。【继续演示课件“平行四边形”】

  教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在平行四边形内,不要求把高画在底边的延长线上。

  ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形。(还可以把平行四边形变成长方形)

  引导学生比较长方形和平行四边形的异同点,使学生明确:

  相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形。

  ②引导学生比较正方形和平行四边形的相同点和不同点。

  使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形。

  ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

三、巩固练习。【继续演示课件】

  1.判断下列图形哪些是平行四边形?

  2.指出平行四边形的底,并画出相应的高。

  3.在钉子板上围出不同的平行四边形。

  4.数一数下图中有()个平行四边形。

 四、教师小结。

  1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

  2.组织学生对所学知识提出质疑,并解疑。

  3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

 五、布置作业。

平行四边形教案优秀9

  教学目标:

  1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

  2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3、对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:

  理解公式并正确计算平行四边形的面积.

  教学难点:

  理解平行四边形面积公式的推导过程.

  学具准备:

  每个学生准备一个平行四边形。

  教学过程:

  一、导入新课。

  1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

  2、好,下面谁来说一说你找到了哪些学过的图形?

  3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的`底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽

  平行四边形的面积=底高

  S=ah

  S=ah或S=ah

平行四边形教案优秀10

  教学内容:第70-73页练习十七第1-3题

  教学要求:

  1、理解平行四边形面积计算公式,能正确地计算平行四边形面积;

  2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。

  教学重点:运用面积公式解答实际问题。

  教具、学具准备:教师准备微机及多边形、平行四边形课件两组、边可活动的平行四边形框架。学生准备任意大小(画有高)的平行四边形纸片、剪刀。

  教学过程:

  一、质疑导入

  1、指出下面平行四边形的底和高各是几厘米?

  2、向学生出示可拉动的长方形框架,问:要求这个长方形的面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)

  3、分别用手拉长方形相对的一对角,使其变形为平行四边形后,问:原来的平行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:平行四边形面积计算)

  二、引导探究

  (一)、初探

  1、微机出示第70页左图,让学生说出平行四边形底和高各是多少厘米,然后数出它的面积。

  2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的面积。

  3、让学生观察、比较:

  (1)两图形的面积都是18平方厘米,那么平行四边形的底和高与长方形的长和宽有什么关系?

  (2)从上面的比较中你想到什么?

  (二)、深究

  1、做导引题下图中阴影部分面积是多少?

  微机演示剪拼过程后让学生回答:

  (1)剪拼前后,图形形状变了没有?面积改变没有?

  (2)阴影部分面积是多少?

  (3)解这道题你想到什么?

  2、剪拼

  (1)刚才用剪拼的`方法解决了一个求面积的问题,你能不能用剪拼的方法,把平行四边形转化成学过的图形,求出它的面积呢?拿出平行四边形纸片,剪一剪,拼一拼,试试怎么样。

  (2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。

  3、引导学生分析得出:沿着平行四边形底边上的任意一条高,都可以把平行四边形剪拼成一个长方形。

  4、归纳

  (1)讨论:

  A平行四边形剪拼成长方形后,两种图形的面积是否改变了?

  B剪拼成的长方形的长和宽分别与原平行四边形什么线段长度相同?

  C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?

  (2)归纳、总结,推导公式。

  A因为长方形面积=长×宽

  所以平行四边形面积=底×高

  B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah

  C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。

  三、深化认识

  1、验证公式:

  让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。

  2、应用公式:

  (1)引导学生解课本第72页例

  (2)完成课本第72页做一做1

  3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?

  四、全课总结

  五、课堂作业

  1、第72页做一做2

  2、练习十七1

  3、练习十七2、3

  板书设计:

  平行四边形的面积

平行四边形教案优秀11

  教学目标:

  1、通过拉一拉长方形,初步认识并了解平行四边形的特点。

  2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形。

  教学准备:两个长方形相框(相同大小,可活动)

  教学过程:

  一、动手探索,多角度认识:

  1、我们学了四边形,怎么判断一个图形是不是四边形呢?

  (板书:四边形四条直边四个角)

  2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相 等,有4个直角)

  3、拉动长方形框架,发生了什么变化?(角、边、形)

  4、揭题:这就是我们今天要学的——平行四边形。(完善板书)

  5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)

  是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手 量一量。

  6、生活中有这样的图形吗?

  1)出示主题图:为什么移动门要设计成这样的形状呢?

  2)展示三角形的稳定性和平行四边形的'不稳定性。通过拉一拉的活动。

  7、围一个平行四边形。

  闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一 围。

  8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)

  鼓励优生多画几个不同的四边形。

  9.“猜猜它是谁”:

  1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?

  2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形?

  四、创设情境,欣赏平行四边形 。

  在哪些地方可以见到平行四边形呢?

  成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的。接着让量一量书上的平行四边形的边和角,概括出平行四边形的特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。

  不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。

  重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。

平行四边形教案优秀12

  教学内容:

  义务教育六年制小学《数学》第九册P64-P66

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:

  掌握平行四边形面积公式。

  教学难点:

  平行四边形面积公式的推导过程。

  教具、学具准备:

  1、多媒体计算机及课件;

  2、投影仪;

  3、硬纸板做成的可拉动的长方形框架;

  4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程:

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的`面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的。面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  ⑴、(微机显示例一)求平行四边形的面积

  ⑵、判断题(微机显示,强调高是底边上的高)

  ⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  ⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形教案优秀13

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ② 填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的.( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( ) 和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高 4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

平行四边形教案优秀14

  一、说教材

  平行四边形的面积的教学是在学习了几何初步知识、长方形、正方形的面积计算以及平行四边形、三角形和梯形的认识的基础上安排的,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。长方形面积计算公式是平行四边形面积计算公式的基础,而平行四边形面积计算公式又是后面学习三角形和梯形面积计算的依据。因此这节课的内容在整个教材体系中起到承上启下的作用。于是我在教学时,将充分运用转化迁移思想,重视学生动手操作与实践,引导学生用已学的旧知去获取新知,构建新的认知结构。

  二、说教法学法

  本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性。利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的'关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  三、说学生

  学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成过程。

  四、说教学目标及重难点

  按照三个维度的要求,本节课的目标确定为三个:

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。

  3、培养学生观察、分析、概括、推导和解决实际问题的能力。

  4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

  教学重点:

  理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  通过转化的方法理解平行四边形的面积计算公式。

  教学准备:

  多媒体课件;让每个学生准备一个平行四边形纸片和一把剪刀。

  五、说教学设计思路

  学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征,会画平行四边形的高。为了让学生更好的理解掌握平行四边形面积公式。因此,在教学中让学生经历猜想操作验证推理的过程,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形面积转化成长方形面积,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想感受到数学知识的应用价值。

  六、说教学环节

  我将整个教学过程划分为四步:

  1、复习长方形的面积计算公式。

  再现长方形面积计算公式和平行四边形的特征,温故知新,为推导平行四边形的面积公式作好铺垫。

  2、用数格子的方法求平行四边形的面积使学生感受到这种方法误差大又有一定的局限性,激发寻找另一种方法。猜想平行四边形的面积可能和什么有关,让学生带着这个思考题进入探究平行四边形的面积计算的思维之中。

  本环节教师呈现带有方格的平行四边形,让学生凭借独特思考,同桌交流互评的渐进过程进行充分的自主探究,再亲历和体验中初步感悟计算平行四边形的方法。这样设计,使得做到本节课的重点突破,为后面进一步学习面积公式做好铺垫。

  3、动手操作,验证猜想:平行四边形面积的计算方法。

  为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。

  通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。

  4、实践运用,深化认识

  数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:

  (1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。

  (2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。

  (3)开放练习,培养学生解决问题的能力。

平行四边形教案优秀15

  4.2.(一)

  教材分析:

  本节课是紧接《平行四边形的性质》一节,其探究的主要内容是“两条对角线互相平分的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判别方法。它是在学生掌握了平行线、三角形全等及简单图形的平移和旋转、平行四边形的定义、性质等基础性知识上学习的。在教学内容上起着承上启下的作用。首先,在探索方式上运用了学习机“图形计算器”的度量、旋转、平移等方法、其次、在探究判别条件的合理性上和运用判别条件时除用到了全等三角形的相关知识,还可以通过直观体验的方法来获取信息。其次,平行四边形的判别条件是研究特殊的平行四边形的基础;再有,平行四边形判别条件的探究模式从方法上为)(研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想的良好素材。教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、利用学习机“图形计算器”探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判别。这样的安排使抽象的推理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。

  教学目标:

  1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。

  探索并掌握平行四边形的两种判别条件,能根据判别方法进行相关的应用。

  2.在探索过程中发展学生的合理推理意识、主动探究的习惯。

  体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  3.在操作学习机的“图形计算器”活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。在学习过程中,来体会平行四边形的图形美和内在美。同时使“图形计算器”真正成为学生的学具。

  教学重点:探索并掌握平行四边形的判别条件。(一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形)。

  教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。

  教学媒体设计:

  为了实现教学目标、优化教学过程、突破教学难点、充分调动学生的各种感官、吸引注意力,课堂上主要采用诺亚舟学习机的“图形计算器”进行辅助教学,通过大屏幕媒体展示教学和学生对“图形计算器”充分利用,使教学过程与知识发展过程和思维过程三者同步,分别在创设情境;观察、探索;理顺、归纳;运用、提高;回顾、反思;布置作业环节都将发挥“图形计算器”的实战功能、让学生真正做到课上听懂、理解透彻。将学生的课堂练习成果进行快速展示,从而节约时间,提高课堂效率。

  教学过程设计:(t—教师,s—学生)

  问题与情境师生行为设计意图

  活动板块1

  前面我们已经学习了平行四边形概念和性质,我们来复习:

  (1)平行四边形概念。

  (2)平行四边形性质。

  (3)如果我们自己作平行四边形,你是如何说明理由的?

  进而得出需进行平行四边形判别条件的探究。

  先由学生根据自主做图的基础上,进行猜想,具备什么条件的四边形是平行四边形,将猜想记录到练习本上。利用学习机的“图形计算器”将你的猜想进行验证。

  活动板块2

  在学生合作探究基础上,对小组活动及时评价、引导。

  同时观察是否有小组已经经过猜想、通过实验验证的方法获得了平行四边形判别条件。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

  活动板块3

  学生继续活动,探究平行四边形判别的其他方法。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

  活动板块4

  通过小结后,借助大屏幕展示学习机的“图形计算器”中预先保存的练习题。

  活动板块5

  小结及学生谈感受、体会、特别是对学习机的使用情况谈体会和认识。

  活动板块6

  课后思考题:(将问题的探究记录在学习机的“图形计算器”中保存)

  1.平行四边形abcd中,在对角线所在直线上取ae、cf,使ae=cf,连接be、df,试说明:be=df。

  2.利用学习机的“图形计算器”制作一组以平行四边形为基本图案的美丽图形。

  t:提出复习概念和性质。

  s:思考,回答结合一起

  复习。

  s:思考、作图、自主参与交流。

  t:引导、合作,对小组活动及时评价。

  t:注意s猜想、验证过程中出现哪些问题,他们想如何解决所遇到的问题。

  t:引导发展s的探究意识和合作中团结解决所遇到的各种问题。

  t:引导和补充。关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  s:通过对学具学习机的“图形计算器”的自主探求,获得平行四边形判别方法。

  s:小组成员合作,其他学生观察、思考得出探究的`正确方向。

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  t:关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:小组成员合作,其他学生观察、思考得出探究的正确方向。

  t:根据授课情况,板演解题过程,或学生口述解题过程。s:板演或口述。

  t:演示引例,解决具体问题中感受应用的价值。

  s:畅所欲言

  t:进行补充,总结。

  s:小组一名同学记录问题题干,另一名同学在学习机的“图形计算器”上记录下图形。课后将问题的探究记录在学习机的“图形计算器”中保存

  立足于旧知识的基础上,引导学生的注意力。

  在情境引入中充分使用学习机“图形计算器”来促进学生学习过程。

  为全体学生提供借助“图形计算器”为基础平台,使全体学生都有信心学习数学知识,调动学生积极性,主动地参与到课程过程中来,树立学习的信心。为教学目标1服务。

  通过全体学生借助“图形计算器”,获得直观的平行四边形判别方法的印象,通过小组间的合作探究,更容易将所获得的信息结论加以认识、记忆。

  学生在学习过程中,对学习机的“图形计算器”的自主发现时,大胆创新,想解决问题。教师起引导者作用,引入符号语言,使学生轻松愉悦地接受并获取经验为今后学习特殊四边形打基础。达成目标1。

  直觉思维能力是数学注意培养发展的能力之一,它有利于人的探究能力的成长和创新精神培养。

  提引问题时教师起组织者作用,使学生感受师生合作、生生合作的愉快,不断的对学具学习机的“图形计算器”的自主探求,获得数学发展,激发学生的学习热情,调动学生学习自主性。共同发展,达成目标1.2。

  在学生最近的知识发展区建立新的生长点,解释应用与拓展的学习主题,在本活动中得以体现。达成教学目标2。

  创设一个平等和谐的畅谈空间,调动学生的积极性,养成良好的总结习惯,善于从能力,情感、态度等方面关注学生对课堂整体感受,发现集体的力量是无穷的,培养集体主义精神。提供一发展平台,给学生留有学习探索的空间。

  展示提出问题,为下节课的学习提出预想。并利用“图形计算器”探求问题,带来直观体验,同时培养学生的观察能力,并提高学生的学习兴趣。

【平行四边形教案优秀】相关文章:

平行四边形的面积教案10-26

平行四边形的认识教案02-20

平行四边形教案3篇05-16

平行四边形教案四篇05-29

平行四边形教案4篇05-26

《平行四边形》数学教案11-20

【精华】平行四边形教案三篇05-28

平行四边形教案汇编九篇05-27

【精品】平行四边形教案四篇05-28

【精华】平行四边形教案7篇05-28

Baidu
map