- 相关推荐
五年级数学教案:《整理和复习》
作为一无名无私奉献的教育工作者,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?下面是小编整理的五年级数学教案:《整理和复习》,仅供参考,大家一起来看看吧。
五年级数学教案:《整理和复习》1
复习要求:
1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。
2.使学生掌握用“四舍五人法”取积、商是小数的近似值。
复习重点:进一步提高计算的正确率和熟练程度。
复习过程:
一、基本练习
1.口算。
0÷5.381.4÷0.20.15×680÷0.58.5×0.2
1.25×0.83.9÷103.9÷1.30.63÷0.90.17×0.4
2.填表。
保留整数
保留一位小数
保留两位小数
10.395
2.047
0.9292......
二、复习指导
1.小数乘、除法的意义。
(1)填空。
①6.5×3表示()
②6.5×0.3表示()
③8.4÷0.4表示()
④8.4÷4表示()
(2)思考并回答。
①小数乘以整数以及一个数乘以小数的意义各是什么?
②小数除法的意义与整数除法相同,是什么?
2.小数乘、除法的计算法则。
(1)计算下面各题。(指4名学生板演。)
0.67×7.50.125×0.241.89÷0.547.1÷0.125
①小数乘法中积的小数点的'位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?
②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?
(3)由学生小结出小数乘、除法的计算法则。
三、课堂练习
1.练习九第3题:计算下面各题,得数保留两位小数。
0.35×0.20xx.1-0.9091.3÷0.03
0.78+5.4366.509÷0.2718.114+9.987
589.76÷160.25×32.50.68÷0.95
先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。
2.练习九第4题:一个纺织厂平均每小时生产棉纱927.5千克。如果每千克棉纱织布7.2米,这个厂每小时生产的棉纱可以织多少米布?
生独立审题,分析数量关系并列式计算。
四、作业
练习九第1、2题
五年级数学教案:《整理和复习》2
一教学内容
和复习
教材第101页的内容。
二教学目标
1.通过复习,帮助学生梳理本单元的知识要点及知识间的联系。
2.培养学生归纳、知识的能力,掌握和复习知识的方法。
3.培养学生自觉复习的.习惯。
三重点难点
归纳、本单元的知识点。
四教具准备
投影。
五教学过程
(一)导入
分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。
(二)教学实施
1.引导学生归纳、梳理知识点。
提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?
学生自己试着归纳,然后请学生汇报发言,集体补充。
老师随着学生的汇报,进行板书。
板书如下
2.应用知识练习。
(1)完成教材第101页的第1题。
先独立完成填空,集体订正。
然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?
(2)完成教材第101页的第2题。
让学生先将这7个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。
(3)完成教材第101页的第3题。
学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。
(4)完成教材第101页的第4题。
先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。
提问:互化时要注意什么?
(四)思维训练
1.分数是真分数,而且可以化成有限小数,x最大是几?
2.一个分数,分子和分母的和是43,如果分母加上17,这个分数就可以化简成言,这个分数是()o
3.一个最简分数,把它的分子扩大2倍,而分母缩小到原来的后,正好等于,这个分数原来是()。
(五)课堂
通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。
五年级数学教案:《整理和复习》3
教学内容:教材P83整理与复习第2题及练习十八第3~9题。
教学目标:
知识与技能:使学生熟练掌握列方程解应用题的步骤。提高学生综合运用知识解决实际问题的能力。
过程与方法:让学生自主探究,分析数量之间的等量关系。使学生能正确地列出方程解决问题,培养学生的主体意识、创新意识以及分析、观察能力和表达能力。
情感、态度与价值观:引导学生在利用迁移、类推的方法解决问题的过程中,体会数学与现实生活的密切联系。
教学重点:抓住关键句,找等量关系。
教学难点:对关键句所叙述的等量关系的理解。
教学方法:自主探索,学练结合。
教学准备:多媒体。
教学过程
一、回忆列方程解应用题的步骤
1.引入:前面我们复习了方程的意义和根据等式关系解方程,现在我们继续来结合实际列方程解决问题。
师:想一想,在列方程解应用题时,应该先做什么?再做什么?
小结:列方程解应用题的步骤。
(1)审题,设未知数x 。
(2)找出等量关系、列方程。
(3)解方程。
(4)检验、写答句。
2.哪一步是列方程解应用题的关键?(划出第2步)根据你的做题经验,你有什么好办法能找到等量关系?
学生汇报:找关键句子。
即时练习,完成教材第83页整理和复习第2题。
二、分类
师:生活中处处有数学,在水果店也能发现我们学过的数学知识。看这些水果多新鲜呀!小玲的妈妈买了三种水果,它们的`价钱有什么关系呢?根据妈妈给出的信息,同桌互相说一说它们的等量关系。
1.出示关键句子,说说等量关系。
(1)4千克苹果和2千克的橙子共34元。
(2)2千克的橙子比4千克苹果便宜6元。
(3)买苹果和桃子各1千克共用11元,每千克桃子的价钱是苹果的1.2倍。
(4)1千克的桃子比苹果贵1元,每千克桃子的价钱是苹果的1.2倍。
(5)买橙子的价钱比苹果的3倍多5元。
(6)3千克的桃子比6千克的香蕉贵9元
2.分类。
师:根据以前列方程解决问题的方法,把它们分一分类,并把同类的序号分别写在横线上。
3.请学生上台分类,预设分成两种类型:(1)和差关系。(2)和倍、差倍关系。
4.小结。
列方程解决问题时,可以利用以上两种类型很快地找出等量关系,从而列出方程。
三、列方程解答问题,对学生进行查缺补漏
师:现在请大家利用关键句子中的等量关系列方程解答。
1.妈妈买来的2千克橙子比4千克苹果便宜6元,每千克苹果多少元?
2.买苹果和桃子各1千克共用了11元,每千克桃子的价钱是苹果的1.2倍。每千克苹果和桃子各是多少元?
(1)学生试做。
(2)汇报过程。(从哪里找到等量关系的,如何列方程解答。)
(3)查缺补漏。(请同学帮助解决错例问题。)
(4)小结:我们在做题时要根据题意认真审题,根据题目中关键句子所表示的和差、差倍或和倍的关系,找准等量关系,从而准确地列出方程解答。
四、综合练习
师:现在我们进行能力大比拼,看谁能很快地写出数量关系,并列出方程。
1.完成教材第84页的第3题。
提问:列方程解应用题有哪些步骤?验算时要注意什么?
2.完成教材第84页的第4题。
⑴学生读题,理解题意。
⑵小组交流,列出式子。
⑶派出代表,将交流的结果展示给其他同学
3.拓展练习
教材第85页第7、9题。学生独立解答,然的小组讨论交流。小组订正。
五、课堂小结
师:这节课你有什么收获?学生说说收获,教师点评。
作业:教材第84~85练习十八第4、5、6题。
五年级数学教案:《整理和复习》4
教学内容:p53第10-13题
教学目标:
1、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题
2、能沟通知识之间的相互联系,提高解决问题的能力
教学重点:熟练解决求一个数是另一个数几分之几的实际问题
教学流程
一、练习与应用
1第52页第10题
先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?
(1)先让学生联系分数的意义口头分析:把全班人数看作单位“1”,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。
(2)再让学生根据分数与除法的'关系列出算式,并写出得数。
(3)独立做下面两题
(4)交流
2做第11题
(1)学生先独立练习
(2)引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
3做第12题练习后加强对比
(1)计算方法有什么相同的地方?
(2)算式中选择的被除数为什么不同?除数为什么相同?
(3)商的表示方法有什么不同?
4做第13题练习后加强对比
要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。
5思考题
方法一:可以根据每个分数中分子与分母的大小关系来判断。
方法二:通过画图帮助思考
二、课堂
完成补充习题上的练习。
五年级数学教案:《整理和复习》5
复习内容:用字母表示数和简易方程(整理和复习第1~3题,练习三十一第1~3题。)
复习要求:
1.使学生进一步明确用字母表示数的意义和作用,会用字母表示数,表示常见的数量关系。
2.会根据字母所取的值,求含有字母的式子的值。
3.进一步理解和掌握方程、方程的解和解方程的含义,并能正确地解简易方程,列方程解文字叙述题。
复习重点:用字母表示数、表示常见的数量关系、正确地解简易方程。
复习过程:
一、基本训练
1.填空。
(1)排球队共有队员a人,女队员有7人,男队员有()人。
(2)1千克大米的.价钱是1.50元,买x千克大米应付()元。
(3)甲数比乙数的3倍还多a,甲数是x,乙数是();如果乙数是x,那么甲数是()。
2.省略乘号,写出下面的式子。
3×a9×xa×4y×5a×x
3.下列各式中,哪些是方程?哪些不是方程?
(1)12+x=13
(2)2.5-0.5=2
(3)5x>3
(4)14.6-7x=0.6
(5)x=0
(6)9=3x
4.在1、2、3、4、5各数中,哪个数是方程9x-3=24的解。
二、复习指导
1.揭示课题:用字母表示数和简易方程(板书)。
2.复习用字母表示数。
(1)用字母表示数。
①举例说明用字母表示数有哪些作用?(用字母可以表示数,还可以表示数量关系,如小明比小红重2千克,用a表示小明的体重,那么小红的体重就是a-2。)
②让学生回答:在含有字母的式子里,乘号怎样简写、略写?
③让学生做P.133页第1题的第(1)小题,说说一星期跑步的米数为什么用7x表示,现在每天跑的米数为什么用x+200表示。
(2)含有字母的式子求值。
①教师说明:在一个含有字母的式子里,当字母所代表的数值一确定,这个式子的值也就确定了。如上面的例子,当小明的体重是30千克时,即a=30,就可以求出a-2的值。
②学生做P.133页第1题的第(2)小题:说一说x=500表示什么意思,求出的7x和x+200的值各代表什么。
3.复习简易方程。
(1)举例说明什么是方程,什么是方程的解。
(2)怎样判断一个式子是不是方程?怎样检验求出的未知数是不是原方程的解?(使学生明确:判断一个式子是不是方程,要把握二点,第一含有未知数,第二必须是等式。检验方程的解是把求出的未知数的值代人原方程检验,看左右两边是否相等。如果相等,说明求出的未知数的值是原方程的解。
(3)复习简易方程的解法、步骤及检验方法、书写格式。
教师板书出①、②、③三个方程,让学生口述解法,使学生明确这几个方程可以直接根据四则运算各部分之间的关系解出来。如6x=30,可以根据乘法各部分间的关系把6x看作因数,30看作积,根据”因数=积÷另一个因数“,x=30÷6,求得x=5。
①x-5=30②x+12=42③6x=30⑧5x+x
④x-5+12=42⑤6x+12=42
⑥6x+6×2=42
⑦6(x+2)=42
然后出示④,让学生看看这个方程有什么特点,使学生看到④是由①、②两个方程复合而成的,⑤是由②、③两个方程复合而成的。等号左边有两步运算,引导学生说出先把哪一部分看作什么数,分两步解。然后由⑤导出⑥,再由⑥导出⑦,引导学生说出这两个方程的联系和解法。最后由③导出⑧,引导学生说出⑧和③的联系及解法。
(4)学生独立做P.133页第3题,做完后,集体检查订正。
三、课堂练习
练习三十一第1-3题。
【五年级数学教案:《整理和复习》】相关文章:
《圆的整理与复习》数学教案04-04
整理与复习华体会可以注销账号不 05-31
二年级数学教案《整理与复习》04-04
整理与复习华体会可以注销账号不 15篇05-31
幼儿园小班数学教案《归类整理》04-03
人教版二年级数学下册第二单元《整理和复习》教案经典(8篇)04-04
《倍数和因数》数学教案04-07