首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>用“转化”的策略解决问题教案

用“转化”的策略解决问题教案

时间:2024-04-12 14:15:46 教案 我要投稿
  • 相关推荐

用“转化”的策略解决问题教案

  作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?下面是小编为大家收集的用“转化”的策略解决问题教案,希望对大家有所帮助。

用“转化”的策略解决问题教案

用“转化”的策略解决问题教案1

  教学内容:教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。

  教学目标:

  1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。

  2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

  3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。

  教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。

  教学难点:会用“转化”的策略解决问题。

  教学准备:课件;学生每人一张例1的格子图。

  教学过程:

  一、创设情境,感知策略

  1.谈话导入。

  师:过年的时候,一些地方有个风俗,就是把窗花贴在窗上,非常漂亮。今天老师也带来了一些非常美丽的窗花,请你在欣赏的时候,仔细观察,它们分别是通过怎样的变化得到的?

  (课件分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)

  提问:(1)蝴蝶是按怎样的顺序变化而来的?

  (2)花环两次变化又是怎样形成的?

  (3)最后一幅又是怎样变化的呢?

  学生回答,师依次板书:平移,旋转,顺时针,逆时针。

  师:同学们回答得都非常好。平移,旋转就在我们身边。今天我们再来利用身边的知识来解决问题。板书课题:解决问题

  二、合作交流,探究策略

  1.出示例1。

  提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)

  2.引导交流。

  提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。

  小组交流,教师巡视,并指导。

  3.指导验证。

  师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?

  学生说想的过程,并投影出示学生的作业纸。

  (生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)

  教师及时评价并用课件演示刚才学生说的过程。

  提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)

  提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)

  教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)

  小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)

  三、应用策略,归纳方法

  1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。

  (1)练习十四第2题的左边两幅图。

  学生独立思考后口答,教师相机演示课件。

  (2)“练一练”右边的图形和练习十四第3题的第一幅图。

  提问:你能用比较简便的方法快速地求出图形的周长吗?

  学生先独立思考,然后和同桌交流。

  个别学生介绍自己的方法,教师相机演示课件。

  小结:在解决这些问题的过程中,我们都用到了怎样的.策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)

  四、回顾知识,体验转化

  1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。

  指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。

  在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

  小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)

  五、拓展运用,提升策略

  1.出示试一试:计算1/2+1/4+1/8+1/16

  提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)

  师:我们一起来画图表示看看。师根据题目依次画图。

  师:这题我们又可以怎样转化呢?学生看图解答。

  指名回答。1-1/16=15/16

  (如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)

  提问:如果给这道题目再添上一个加数1/32,和是多少?再加上1/64呢?如果一直这样加下去,加到1/1024呢?

  小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)

  3、出示:比较大小:16/17和35/36

  你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。

  2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:

  出示练习十四第1题。

  (1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。

  (2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)

  (3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)

  (4)如果有64支球队,产生冠军一共要比赛多少场?

  3.出示练习十四第2题的第3幅图。

  学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。

  4.出示练习十四第3题的第2幅图。

  要求图形中红色部分的周长是多少,你有什么好方法?

  学生独立思考后解答(思路:转化成2个圆的周长),集体校对。

  小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?

  六、课堂小结

  今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。

  七、课堂作业:完成补充习题相关内容

  板书设计:

  解决问题的策略——转化

  平移 转化成体积相等的长方形

  旋转(顺时针,逆时针) 不规则——规则

  S三角形——S平行四边形 复杂——简单

  S梯形——S平行四边形 未知——已知

  S圆 —— S长方形 不熟悉——熟悉

  ------

  小数乘法——整数乘法

  分数除法——分数乘法

用“转化”的策略解决问题教案2

  教学目标:

  1.让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

  2.让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。

  3.感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。

  教学重点:

  掌握用转化的策略解决分数问题的方法,增强策略意识。

  教学难点:

  根据具体问题,确定转化后要实现的目标和转化的具体方法。

  教学方法:

  讨论、观察

  教学手段:

  多媒体课件

  教学过程:

  一、复习引入

  老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。

  出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。

  提问:在刚才的做题、交流过程中,你有什么感受或发现?

  二、新授,尝试运用转化的策略解决问题

  1.教学例2

  课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的`。

  能不能转化成更简单的算式?

  出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?

  引导:看图想一想,可以把这一算式转化成怎样的算式计算?

  提问:这时该怎么做呢?学生独立列式计算。

  和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?

  小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。

  2.练一练

  三、练习运用转化策略

  1.练习十六第5题 比较几种方法哪种更简单呢?你有什么体会呢?

  2.练习十六第6题

  出示问题,指导学生理解图意。

  明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。

  如果不画图,有更简便计算方法吗?

  进一步提问:如果有64支球队,产生冠军一共要比赛多少场?

  3.练习十六第7、8、10题

  四、总结故事启迪,领悟转化的技巧

  五、指导完成思考题

  弄清27+19的和就是最大长方形的长与宽的长度之和。

  作业布置 练习十六第9、11、12、13题

用“转化”的策略解决问题教案3

  教学目的:

  1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

  2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。

  教学重点:

  掌握用转化的策略解决分数问题的方法,增强策略意识。

  教学难点:

  根据具体问题,确定转化后要实现的目标和转化的具体方法。

  教学过程:

  一、看谁的联想最多?

  出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?

  学生可能说:

  (1)把女生人数看作“1” ——找单位“1”

  (2)男生人数有这样的2份,女生人数有这样的3份。

  (3)一共有这样的5份

  (4)女生比男生多1份 ——份数

  (5)男生人数占全班人数的2/5,女生人数占全班人数的3/5

  (6)女生是男生的3/2 ——分数

  小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。

  二、新授

  1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”

  2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。

  3、学生独立完成,教师巡视指导。

  4、指名交流解题思路。

  5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?

  6、学生独立完成,小组交流。指名交流。

  学生可能想到:

  (一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”

  50÷(3+2)=10(人) 10×3=30(人)

  (二)将关键句转化成分数来理解“女生占全班人数的3/5”

  50×3/5=30(人)

  7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。

  8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)

  三、巩固练习

  1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?

  (1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)

  (2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的'人数是美术组的8/5。

  (3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。

  板书:问题转化成已知条件的几分之几。

  2、练习十四5:

  (1)看图填空。

  绿彩带

  红彩带

  绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。

  (2)一杯果汁,已经喝了 2/5 ,

  喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。

  3、练习十四6

  (1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?

  黑兔只数占白兔、黑兔总只数的 ()/() 。

  (2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?

  已经看的页数是没有看的页数的 ()/() 。

  4、只列式,不计算。(说说你是怎样转化的)

  (1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?

  (2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?

  (3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?

  5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?

  6、思考题:

  有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。

  全课小结:今天这节课,我们学习了什么知识?你有哪些收获?

  板书设计:

  用转化思路解答分数除法应用题

  繁 简

  用方程解答: 用乘法解答:

  解:设女生有x人。

  x+2/3 x=35

  5/3x=35 35×3/5=21(人)

  x=21

  答:女生有21人

【用“转化”的策略解决问题教案】相关文章:

解决问题的策略——转化 05-11

《用除法解决问题》教案04-12

解决问题的策略 03-20

解决问题的策略说课稿07-07

《解决问题策略》教学设计05-12

《解决问题的策略——假设》 05-11

《解决问题的策略》优秀 08-08

解决问题的策略,替换 05-12

五年级数学《解决问题的策略,倒推》教案04-09

Baidu
map