首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>《最小公倍数》教案

《最小公倍数》教案

时间:2024-05-17 10:35:20 教案 我要投稿

《最小公倍数》教案15篇【实用】

  作为一名教职工,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编帮大家整理的《最小公倍数》教案,欢迎大家分享。

《最小公倍数》教案15篇【实用】

《最小公倍数》教案1

  教学目标

  1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。

  2、培养学生主动探究的意识和能力。

  教学过程

  (一)问题情境引入

  师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?

  (二)新课展开

  1.建立公倍数、最小公倍数的概念。

  (1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

  学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

  生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

  可由学生边讲边画出示意图,也可由教师根据学生回答板书。

  教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

  生甲:还会相遇,不过画图找太麻烦了。

  生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

  教师板书学生思路:

  甲组经过:6天、12天、18天、24天、30天、36天……

  乙组经过:9天、18天、27天、36天、45天……

  所以经过18天、36天……他们会再次相遇。

  ……

  师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?

  生:甲组、乙组经过的天数分别是6的倍数和9的倍数。

  6的倍数:6、12、18、24、30、36……

  9的倍数:9、18、27、36、45……

  师:我们还可以用集合图来表示,师生共同画出:(图略)

  师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?

  生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。

  (1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

  (2)师:那么什么叫公倍数、最小公倍数?

  学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)

  师:有没有最大公倍数,为什么?

  生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公倍数还有54、72、90……无穷无尽。

  3、用列举法求两个数的公倍数、最小公倍数,你能再找一找6和4的.公倍数、最小公倍数吗?

  4、做课本第54页练一练第1题,学生试算后,反馈。

  生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

  教师随学生叙述板书:

  6的倍数有:6、12、18、24……

  4的倍数有:4、8、12、16、20、24……

  6和4的公倍数有:12、24……

  6和4的最小公倍数是12。

  (2)师生共同小结方法。

  (3)练习:<1>完成课本练一练第2题。

  <2>完成课本练一练第3题。

  <3>完成课本练一练第4题。

  <4>完成课本练一练第5题。

  (三)课堂小结

  通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)

《最小公倍数》教案2

  教学要求

  ①使学生理解公倍数、最小公倍数的概念。

  ②使学生初步掌握求两个数的最小公倍数的方法。

  ③培养学生抽象概括的能力和实际操作的能力。

  教学重点理解公倍数、最小公倍数的概念。

  教学难点求两个数的最小公倍数的方法。

  教学用具投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和86和1113和2617和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的'倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4和6公有的倍数有:12、24、36......

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数6的倍数

  48162012246830

  ..................

  4和6的公倍数

  (4)抽象、概括。

  ①什么是公倍数、最小公倍数?(让学生说)

  ②指导学生看教材第71页有关公倍数、最小公倍数的概念。

  (5)尝试练习。

  做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2×3×3×5)

  (4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:

  2×3×3×5=90

  (5)教学求最小公倍数的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最小公倍数了?

  (6)尝试练习。

  做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求最小公倍数的方法。

  ①谁能说说求最小公倍数的方法。

  ②指导学生看第74页求两个数的最小公倍数的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

《最小公倍数》教案3

  教学目标

  (1)继续巩固求几个数的最小公倍数的方法。

  (2)理解求最大公约数和最小公倍数方法之间的联系和区别,能正确地求几个的最大公约数和最小公倍数。

  教学重点、难点

  重点、难点:能正确地求几个的最大公约数和最小公倍数。

  教具、学具准备

  教学过程

  备注

 一、复习巩固,熟练方法

  1、直接写出下列各组数的最小公倍数

  5和812和183和2435和720和158和68和106和95、3和69、6和182、3和415、20和5

  (1)教师逐题出示,要求学生直接在作业本上写出得数(例;[5、8]=40)

  (2)检查:学生报,同桌互相批改,再订正。

  (3)提问:5、3和62、3和4的最小公倍数为什么不是它们的连乘积?

  2、改错练习

  (1)学生自己判断P.64第8题并思考,不正确的错在哪里?

  (2)讨论:两种方法中,哪种方法正确?错误的方法错在哪里?求三个数的最小公倍数要注意什么?

  (3)师生归纳:求三个数的`最小公倍数,一定要先用三个数的公约数去除,一直到三个数只有公约数1时,才能用两个数的公约数去除,直到“两两互质”。

  3、练习:求下列各组数的最小公约数

  24、16和308、11和20

  14、21和356、9和10

  (1)学生练习。(四人做在黑板上)

  (2)反馈:师生共同讨论板演题目

  二、比较练习,加深理解

  1、出示:求下列各组数的最小公倍数和最大公约数,并把它们填到表中:

  36和5472和1844和5510和9

  两数关系举例最大公约数最小公倍数

  一般关系

  倍数关系

  教学过程

  备 注

  互质关系

  (1)学生练习。

  (2)反馈并比较

  (3)师生讨论,将练习结果填到表格中。

  (4)用自己的话将表格的意思说一说(重点说求的方法)。

  (5)教师小结:求一般关系的两个数的最大公约数和最小公倍数通常用短除法,除数相乘为最大公约数,除数与商相乘为最小公约数;倍数关系两个数的最大公约数是较小的数,最小公倍数是较大的数;而互质关系的两个数的最大公约数为1,最小公倍数为它们的乘积。

  2、出示:求30、60和80的最大公约数和最小公倍数。

  (1)两人板演,其余边算边思考:用“短除法”求三个数的最大公约数和最小公倍数A、除数有什么不同要求?B、最后的商有什么不同要求?C、在连乘的时候有什么不同?

  (2)学生练习后,将以上问题讨论明确,并填好下表:

  最大公约数最小公倍数

  ......

  (3)总结以上表格内容。

  3、练习:

  求;24、18和3616、20和80的最大公约数和最小公倍数。

  (1)学生练习。

  (2)对照表格检查后提问:能不能把求三个数的最大公约数和最小公倍数简缩为一个短除式?要注意什么?

  明确:熟练以后可以用一个短除式同时求三个数的最大公约数和最小公倍数,但要注意要先用三个数的公约数去除,三个数只有公约数1时,才能用两个数的公约数去除,并做好记号。

  例:

  (24、18、36)=2×3=6

  (24、18、36)=2×3×2×3×2×1×1=72

  4、课堂总结。

  三、综合练习

  求下列各组数的最大公约数和最小公倍数

  60和456、9和182、3和515、25和45

  34和857、12和246、12和245、7和10

  (1)学生练习。

  (2)反馈:说一说求2、3和5、5、7和10两组的最小公倍数的方法有什么不同?为什么?

  (3)说一说求7、21和36、12和24两组的最大公约数的方法有什么不同?为什么?

  四、作业《作业本》

  注意讲清计算方法,避免求最大公约数和求最小公倍数的方法混淆;加强混合练习,让学生在实际练习中区别它们的异同。

《最小公倍数》教案4

  说课:

  “公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。

  由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。

  教学目标:

  1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。

  2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的'习惯。

  教学过程:

  一、情景导入

  1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?

  出示课题:公倍数

  谁能用自己的话说一说什么叫公倍数?

  这一个是最小的,我们又称它为什么?

  补充课题:最小公倍数

  谁能再来说一说什么叫最小公倍数?

  今天我们就来研究公倍数与最小公倍数。

  二、探究

  1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。

  2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。

  3、成果汇报:(由学生任选一种方法)

  (1)公倍数有多少个?

  (2)求最小公倍数的几种方法:

  ①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):

  ②分解质因数:如:12与30的最小公倍数(见上右图)

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  =2×3×2×5=60

  从这两个分解质因数的式子里你能看出12与30的最大公约数是几?

  最大公约数与最小公倍数之间有什么关系?参见下左图。

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  短除法:如求:36和45的最小公倍数,参见上右图。

  讨论:与求最大公约数比较有什么异同之处?

  短除法与分解质因数有什么联系?

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20;65和130;4和15;18和24。

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。

  4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?

  三、回家作业布置(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

   :

  我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。

《最小公倍数》教案5

  第一课时

  教学内容:公倍数、最小公倍数的认识

  教学目标:

  使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。

  教学过程;

  一、复习

  写出6、9的倍数,从1倍开始,2倍,3倍………

  二、导入新课

  1、例1、从小到大,顺次写出几个6的倍数和几个9的倍数。找出6和9公有的倍数,最小的一个公有倍数是几?

  2、分析:

  6的倍数有:6、12、18、24、30、36、42……

  9的倍数有:9、18、27、36、45、54……

  6和9公有的倍数有:18、36……,其中最小的一个是(18),3、讲解概念:

  几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  4、想一想:

  (1)有没有最大公倍数,为什么?

  (2)倍数、公倍数、最小公倍数有什么区别?

  三、练一练

  1、把4和6的倍数和公倍数分别填入下面的圈内,再找出它们的最小公倍数。

  2、完成书本第54页练习。

  四、总结归纳

  1、最小公倍数只有一个,而一个数的倍数是无限的`,所以几个数的公倍数也是无限的。

  2、在集合图内列举的倍数后面都要加“……”。

  3、没有最大公倍数。

  五、布置作业

  反思:应加强对公倍数、最小公倍数概念的教学。并与公约数、最大公约数的概念联系起来记忆。并让学生知道为什么要学最大公约数而不学最小公约数,学最小公倍数而不学最大公倍数。

《最小公倍数》教案6

  教学要求通过比较,使学生进一步分清求最大公约数和最小公倍数的相同点和不同点,并能正确地求出几个数的最大公约数和最小公倍数。

  教学重点比较求两个数的最大公约数和最小公倍数的不同点。

  教学用具在投影片上画好教材第80页的表格(留空备用)

  教学过程

  一、创设情境

  1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

  2.很快说下面每组数的最小公倍数。

  5和79和459和122、3和118、10和403、4和6

  二、探索研究

  1.教学例5。

  (1)出示例5(点2名学生在黑板上做,其余的`学生做在练习本上):

  28422842

  71467146

  2323

  28和42的最大公约数是:42和28的最小公倍数是:

  2×7=142×7×2×3=84

  (2)揭示课题:我们现在来比较一下,求两个数的最大公约数和最小公倍数的方法有什么相同点和不同点。(板书课题:最大公约数和最小公倍数的比较)

  (3)出示留空的表格。

  先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

  (4)看表上的不同点回答。

  为什么它们在计算时不相同?

  使学生明确:

  ①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。

  ②而两个数的最小公倍数不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的最小公倍数。

  (5)尝试练习。

  做教材第80页的“做一做”,然后点几名学生说一说是怎样做的。

  三、课堂实践

  做练习十六的第2题。

  四、课堂小结

  学生小结求两个数的最大公约数和最小公倍数的异同点。

  五、课堂作业。做练习十六的3、4、5、6*题。

  四、分数的意义和性质

《最小公倍数》教案7

  教学内容 第十册数学P72—74最小公倍数

  教学目标

  1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

  2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

  3、培养学生的积极学习情感,学会欣赏他人。

  教学过程

  一、再现原有知识结构

  1、用短除法求30与45的最大公约数

  独立完成,一人板演,集体订正。

  师提问:怎样用短除法求两个数的.最大公约数?

  (评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

  二、构建新的知识结构

  1、揭示课题

  今天我们来研究最小公倍数。(板书课题)

  2、明确意义

  师:你认为什么是最小公倍数?

  生1:两个数公有的最小的倍数。

  师:说的很好,你很会扩写。(生笑)

  生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

  生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

  生说完师出示,齐读。

  (评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

  3、探讨求法

  出示:求4与5的最小公倍数。

  师:你认为可以怎样求两个数的最小公倍数?

  生1:用短除法。(师板书:短除法)

  师:oh,你会吗?

《最小公倍数》教案8

  教学目标:

  1、初步建立公倍数和最小公倍数的概念;

  2、初步培养学生的数学应用意识与解决简单实际问题的能力。

  3、培养学生的比较推理与抽象概括能力。

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用“公倍数与最小公倍数”解决生活实际问题

  教法学法:

  根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。

  教具准备:

  印有月历纸。

  教学过程:

  一、创设情境,设疑引入

  教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打

  算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  (以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的.基本思路。)

  二、激思引探,教学新知

  1.几个数的公倍数和最小公倍数的概念教学

  从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。

  4的倍数:4、8、12、16、20、24、28

  6的倍数:6、12、18、24、30

  4和6的公倍数:12、24

  其中最小的一个:12

  师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的,不可能写出一个数的所有倍数).

  师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)

  师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)

  (通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)

  2、及时练习

  师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。

  三、巩固练习

  1、书本练一练的第一题

  2、书本练一练的第三题

  3、书本练一练的第四题。

  4、判断题

  (1)两个数的积一定是这两个数的公倍数。

  (2)两个数的积一定是这两个数的最小公倍数。

  (3)两个数的公倍数是无限的,而最小公倍数只有一个。

  此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。

  四、课堂小结:学生回忆整堂课所学知识。

  学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。

  整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。

《最小公倍数》教案9

  教学要求:

  1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

  2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

  教学重点与难点:

  让学生在用不同方法找两个数的公倍数和最小公倍数的过程中,逐步掌握方法,形成技能。

  教学流程:

  一、基础练习找出下面每组数的最小公倍数。4和63和75和910和6

  二、完成第25页的5~8题。

  1、第5题

  ⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

  ②找出每组两个数的最小公倍数。

  ③比较和交流:有什么发现?(两个数的最小公倍数就是它们的乘积。)

  ⑵独立完成右边4题,再比较交流发现了什么?

  2、第6题

  3、第7题先让学生用列表的.方法找出答案,并通过交流使学生体会到列表的过程实际上就是求7和8的最小公倍数。

  4、第8题先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

  三、小结:通过今天这一节课的学习,你有什么收获?

  四、思考题

  提示:先用列举法找3、4和6的最小公倍数。

《最小公倍数》教案10

  教学内容:教科书五年级上册第81——82页及练习。

  教学目标:

  1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

  2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

  3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

  教学重点:学会用短除法求两个数的最小公倍数。

  教学过程:

  一、课前活动——对口令

  师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

  2、对出一个数,它既是2的倍数也是3的倍数。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

  请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

  师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

  出示教材上的情境图。

  师:从两个人的对话中了解到哪些数学信息?

  生1:聪聪用了5/6小时。

  生2:红红用3/4小时就打完了。

  师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

  学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

  师:谁来说说是怎样比较的?谁打得快呢?

  学生交流,教师进行板书。

  生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。

  5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

  20/24>18/24,所以5/6>3/4。

  红红打得快。

  生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

  5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

  10/12>9/12,所以5/6>3/4。

  ……

  如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

  师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

  学生可能有不同的表达方式,概括一下,应有如下回答:

  ●相同的地方

  (1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的'。

  (2)两种方法通分时用的分母12和24都是6和4的公倍数。

  教学预设

  ●不同的地方

  (1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

  (2)24是12的2倍。

  ……

  师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。

  学生自己找,教师巡视。

  师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

  4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

  师:如果让你继续找下去,4的倍数还有没有?用什么表示?

  生:还有无数个,用省略号表示。

  生:6的倍数有:6,12,18,24,30,36,42,48,

  师:如果让你继续找下去,6的倍数还有没有?用什么表示?

  生:还有无数个,也用省略号表示。

  生:然后找4和6的公倍数有:12,24,36,48,……。

  教师根据学生的回答出示课件。

  师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

  学生可能会说:

  生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

  师:60后面还有没有?还有多少个?

  生:还有无数个,用省略号表示。

  师:有没有最大公倍数?

  生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

  师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

  生:12。

  师:还有比12小的公倍数吗?

  生:没有了。

  师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

  师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

  学生之间互相交流。

  教师引导学生出概念(出示课件)让学生读一读。

  师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

  用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

  板书设计:

《最小公倍数》教案11

  一、教材简析

  《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

  二、教学目标及教学重、难点

  根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

  2.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

  3.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。 教学重点: 公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

  教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

  三、设计理念

  数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本1.让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。 思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

  四、教学过程

  (一)故事引入 感知概念

  出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

  根据学生的汇报,教师完成板书:

  巴依老爷的休息日 4、8、12、16、20、24、28 ??

  账房先生的休息日 6、12、18、24、30 ??

  他们共同休息日 12、24??

  最早的休息日12

  【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

  (二)加深理解 总结方法

  1.公倍数和最小公倍数的概念教学

  从“巴依老爷的休息日” 、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、 “4和6的最小公倍数”)。教师完成板书

  巴依老爷的休息日(4的倍数) 4、8、12、16、20、24、28 账房先生的休息日(6的倍数) 6、12、18、24、30 ?? 他们共同休息日(4和6的公倍数) 12、24

  最早的休息日 (4和6的最小公倍数) 12

  【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

  2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

  【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

  (三)巩固运用

  再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

  出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?” 问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的.乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

  【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

  (四)解决问题 深化理解

  在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

  【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

《最小公倍数》教案12

  【教学内容】:

  人教版五年级下册教科书第88—90页内容。

  【设计理念】:

  数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的`特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。

  【教学目标】:

  1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的公倍数和它们的最小公倍数。

  2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。

  3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。

  【教学重点】:

  1、理解公倍数与最小公倍数的概念

  2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教学难点】:

  能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教具、学具准备】:

  多媒体、日历。

《最小公倍数》教案13

  教学目标

  1.使学生掌握求两个数的最小公倍数的两种特殊情况,能正确、合理地求两个数的最小公倍数。

  重点难点

  求两个数的最小公倍数的两种特殊情况。

  主要教学方法

  新授课谈话法讨论法

  操作过程

  求12和36的最小公倍数求9和5的最小公倍数

  〔12,36〕=2×2×3×1×3=36〔9,5〕=9×5=45

  如果大数是小数的`倍数,那么大如果两个数是互质数,数就是这两个数的最小公倍数。那么这两个数就是它们的最小公倍数。

  教师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一.复习准备×

  1.填空。

  (84)=2×2×3×7

  (70)=2×5×7

  ()和()的最小公倍数是:

  (2×2×3×5×7=420)

  两个数的最小公倍数是两个数()各自()的积。

  2.说出用短除法求两个数的最小公倍数的步骤。

  3.用短除法求45和60,12和36,9和5的最小公倍数。

  二.教学新课

  1.两个数是倍数关系。

  12和36的最小公倍数是36。

  说出下面各组数的最小公倍数。

  17和5118和10815和225

  2.两个数是互质数

  如9和5是互质数,它们的最小公倍数是45。

  说出下面各组数的最小公倍数。

  8和913和178和72

  3.练一练第3题

  三.介绍求最小公倍数的一种简便方法--大数翻倍法。

  四.巩固练习。

  1.填空

  (1)如果a能被b整除,a和b的最大公约数是(b),最小公倍数是(a)。

  (2)如果a和b是互质数,a和b的最大公约数是1,最小公倍数是(a×b)

  2.练一练第4题

  五.小结:求两个数的最小公倍数,要认真看清题目,选用合理的方法。

  六.作业:目标与检测第68页

  1.学生口答

  2.连起来说一说

  1.指名说

  3.同桌互说

  指名板演,其余自练。

  1.观察这组数:12和36有什么关系?

  2.归纳:如果大数是小数的倍数,那么大数就是这两个数的最小公倍数。

  1.观察这组数,从这里你发现了什么?

  2.归纳:如果两个数是互质数,那么

  这两个数的积就是它们的最小公倍数。

  3.学生口答

  先填空,再连起来说一说。

  延伸练习

  反馈与矫正

  目标达成情况

《最小公倍数》教案14

  设计说明

  1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

  结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

  2.放手让学生自主探究,获取新知。

  著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 若干张长3 dm、宽2 dm的卡片

  教学过程

  ⊙创设情境,引入新课

  1.引导学生回忆。

  师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

  2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

  设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

  ⊙小组合作,解决问题

  1.拼一拼。

  (1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

  (2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

  2.说发现。

  师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

  3.解决问题。

  师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

  4.回顾解决“铺墙砖”问题的.关键。

  把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

  ⊙学习公倍数的应用

  1.解决教材72页11题。

  爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

  2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

  预设

  生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

  (3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

  生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

  (4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

  生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

《最小公倍数》教案15

  教学内容:完成练习四的第5~8题。

  教学目标

  1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的`方法求两个数的最小公倍数。

  2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

  教学重、难点:求两个数的最小公倍数的一些简捷的方法。

  教学过程:

  一、基础练习

  找出下面每组数的最小公倍数。

  4和6 3和7 5和9 10和6

  二、完成第25页的5~8题。

  1、第5题

  ⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。

  ②找出每组两个数的最小公倍数。

  ③比较和交流:有什么发现?

  (两个数的最小公倍数就是它们的乘积。)

  ⑵独立完成右边4题,再比较交流发现了什么?

  2、第6题

  先由学生独立完成。

  然后说说分别是什么方法求出每组上数的最小公倍数的?

  3、第7题

  先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过

  程实际上就是求7和8的最小公倍数。

  4、第8题

  先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的

  最小公倍数,再让学生独立解答。

  三、小结:通过今天这一节课的学习,你有什么收获?

  四、思考题

  提示:先用列举法找3、4和6的最小公倍数。

【《最小公倍数》教案】相关文章:

《最小公倍数》教案05-17

【推荐】《最小公倍数》教案05-17

《最小公倍数》教学设计05-13

“最小公倍数”五年级数学教案11-20

五年级数学教案最小公倍数04-09

获奖最小公倍数说课稿03-27

五年级数学《最小公倍数的认识》教案优秀05-08

高中教案教案03-05

大班教案认识a的教案10-10

Baidu
map