(实用)《最小公倍数》教案22篇
作为一位杰出的教职工,总不可避免地需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的(实用)《最小公倍数》教案,希望能够帮助到大家。
《最小公倍数》教案 1
教学目标
使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。
教学重点、难点
重点、难点:求两个数的公倍数和最小公倍数
教 学过程
备 注
一、问题情境引入
师:五(2)班小天使出鹰假日小队有甲乙两个小组,他们约定甲组每6天到社区参加一次劳动,乙组每9人到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?
(问题情境的材料可视学生实际情况作调整)
二、新课展开
1、建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、28天、30天、36天......
乙组经过:9天、18天、27天、36天、45天......
所以经过18天、36天......他们再次相遇。......
(2)师:(指板书)请同学们观察一下,甲组经过的天数、乙组经过的天数实际上是什么数?
生:甲组、乙组经过的天数分别是6的倍数和9的倍数。(教书调整板书)
6的倍数:6、12、18、24、30、36......
9的倍数:9、18、27、36、45......
教学过程
备 注
师:上节课我们学习了公约数,最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?
生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。
(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
师:那么什么叫公倍数、最小公倍数?
学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
师:有没有最大公约数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的'公约数还有54、72、90......无穷无尽。
2、用列举法求两个数的公约数、最小公约数。
(1)师:刚才我们找了6和9的公约数、最小公约数,你能再找一找6和4的公倍数、最小公倍数吗?
做课本第57页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生记叙板书;
6的倍数有:6、12、18、24......
4的倍数有:4、8、12、16、20、24......
6和4的公约数有:12、24......
6和4的最小公约数是12。
(2)师生共同方法。
(3)练习:完成课本练一练第2、3、4、5题。
三、课堂
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)
四、作业《作业本》
从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。
课后反思:
激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
《最小公倍数》教案 2
教学目标
1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。
2、培养学生主动探究的意识和能力。
教学过程
(一)问题情境引入
师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?
(二)新课展开
1.建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示意图,也可由教师根据学生回答板书。
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、24天、30天、36天……
乙组经过:9天、18天、27天、36天、45天……
所以经过18天、36天……他们会再次相遇。
……
师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?
生:甲组、乙组经过的天数分别是6的倍数和9的倍数。
6的倍数:6、12、18、24、30、36……
9的倍数:9、18、27、36、45……
师:我们还可以用集合图来表示,师生共同画出:(图略)
师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?
生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。
(1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
(2)师:那么什么叫公倍数、最小公倍数?
学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)
师:有没有最大公倍数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的.,所以永远找不到最大公倍数,6和9的公倍数还有54、72、90……无穷无尽。
3、用列举法求两个数的公倍数、最小公倍数,你能再找一找6和4的公倍数、最小公倍数吗?
4、做课本第54页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生叙述板书:
6的倍数有:6、12、18、24……
4的倍数有:4、8、12、16、20、24……
6和4的公倍数有:12、24……
6和4的最小公倍数是12。
(2)师生共同小结方法。
(3)练习:<1>完成课本练一练第2题。
<2>完成课本练一练第3题。
<3>完成课本练一练第4题。
<4>完成课本练一练第5题。
(三)课堂小结
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)
《最小公倍数》教案 3
教学内容:
最小公倍数
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
学习目标:
1、理解最小公倍数的意义
2、初步学会求两个数的最小公倍数。
学习任务:
任务一 理解最小公倍数的意义
任务二 求两个数的最小公倍数
教学过程:
一、激情导课
1、师:同学们,看今天我们要学习什么?(最小公倍数)
看到这个题目,你会想到我们以前学过的什么知识?(倍数)
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。
二、民主导学
任务一
一、任务呈现
师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天
二、自主学习
教师巡视学习情况
三、展示交流
1、师:他们可选那几日外出?(12、24)
你是怎样选出来的?根据回答板书;
妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数
爸爸的休息日:6 12 18 24 30 -----6的倍数。
共同的休息日:12 24 -----4和6的公倍数
最近的一天:12------4和6的.最小公倍数
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调 4 的公倍数就是妈妈的休息日
6 的公倍数就是爸爸的休息日
4 和6的公倍数就是爸爸和妈妈的共同休息日
4、最近是哪一天? 12
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示 出示课件
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4 和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
7、89页做一做
二、那如何求最小公倍数呢?
任务二
求两个数的最小公倍数
一、任务呈现
1、求6和8的最小公倍数
2、想一想
1.你还能想出几种求法?
2.公倍数有多少个?你能找出最大的公倍数吗?
3.两个数的公倍数和最小公倍数之间有什么关系?
二、自主学习
三、展示交流
1、把不同求法板书
2、交流以上三个问题
(三)检测导结
1、目标检测
求下列每组数的最小公倍数(要求5分钟)
2和7 4和8
3和5 6和15
2、结果反馈
一次正确5分,自己改正4分,帮助改正3分,
3、反思总结 谈谈收获和不足
《最小公倍数》教案 4
教学要求
在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最小公倍数。
教学重点
掌握求两个数的最小公倍数的方法。
教学难点
正确、熟练地求出特殊情况下两个数的最小公倍数。
教学过程
一、创设情境
1.口算练习:将练习十五的'第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是最小公倍数?
3.求24和32的最小公倍数。
4.说说下面每组中的两个数有什么关系?
12和364和5
二、揭示课题
我们已经学会求两个数的最小公倍数,这节课我们将继续学习求特殊情况下两个数的最小公倍数。(板书课题:求特殊情况下两个数的最小公倍数)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的最小公倍数。
(2)观察结果:通过这两组数的最小公倍数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材的结论。
(4)尝试练习。
做教材下面的“做一做”,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的最小公倍数,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打√,错的打×,再点几名学生讲打√或×的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
《最小公倍数》教案 5
教学要求
①使学生理解公倍数、的概念。
②使学生初步掌握求两个数的的方法。
③培养学生抽象概括的能力和实际操作的能力。
教学重点
理解公倍数、的概念。
教学难点
求两个数的的方法。
教学用具
投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和8 6和11 13和26 17和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1 及画好的'数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4 和6公有的倍数有:12、24、36
其中最小的一个是12。
②也可以用图来表示。
4的倍数 6的倍数
4 8 16 20 12 24 6 8 30
4 和6 的公倍数
(4)抽象、概括。
①什么是公倍数、?(让学生说)
②指导学生看教材第71页有关公倍数、的概念。
(5)尝试练习。
做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
2 18 2 30
3 9 3 15
3 5
18=233
30=235
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2335)
(4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:
2335=90
(5)教学求的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出了?
(6)尝试练习。
做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求的方法。
①谁能说说求的方法。
②指导学生看第74页求两个数的的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
《最小公倍数》教案 6
教学内容:
求两个数的最小公倍数
教学目标:
使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。
教学过程:
一、复习
1、什么是公倍数,最小公倍数?
2、写出12、30的公倍数和最小公倍数?
二、教学新课
1、提出课题:“求两个数的最小公倍数”
2、把12、30和它们的最小公倍数60,分别分解质因数。
212230260
26315230
3515
5
12=2×2×3
30=2××3×5
60=2×2×3×5
观察上面各数分解质因数的情况,你发现了什么?
(最小公倍数60的质因数里,包含了12和30公有的质因数2、3,还有12独有的质因数2,30独有的质因数5。)
3、利用上面的情况,用简便方法求12和30的最小公倍数。
21230………用公约数2除
3615……….用公约数3除
25……..只有公约数1,不必再除
把所有的`除数和商连乘起来,得到:
12和30的最小公倍数是2×3×2×5=60,也可以这样表示:
[12。,30]=2×3×2×5=60
4、求两个数的最小公倍数,先用这两个数的()连续去除,一直除到所得的商只有公约数1,然后把所有的()和()连乘起来。
5、尝试练习
求下面每组数的最小公倍数。
12和16,33和22,16和20,36和54,30和45,10和15
三、教学求倍数关系,互质关系的最小公倍数。
在下面各组数中找出倍数关系,互质关系
12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11
1、倍数关系
2、互质关系
3、想一想
(1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。
(2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。
四、巩固练习
书本第56页1至4题。
五、归纳
六、布置作业
反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。
《最小公倍数》教案 7
教学内容
第十册数学P72—74最小公倍数
教学目标
1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。
2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。
3、培养学生的积极学习情感,学会欣赏他人。
教学过程
一、再现原有知识结构
1、用短除法求30与45的最大公约数
独立完成,一人板演,集体订正。
师提问:怎样用短除法求两个数的最大公约数?
(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)
二、构建新的知识结构
1、揭示课题
今天我们来研究最小公倍数。(板书课题)
2、明确意义
师:你认为什么是最小公倍数?
生1:两个数公有的最小的倍数。
师:说的很好,你很会扩写。(生笑)
生2:两个数公有的倍数叫做它们的公倍数,其中最小的.一个是它们的最小公倍数。
生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。
生说完师出示,齐读。
(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)
3、探讨求法
出示:求4与5的最小公倍数。
师:你认为可以怎样求两个数的最小公倍数?
生1:用短除法。(师板书:短除法)
师:oh,你会吗?
《最小公倍数》教案 8
教学目的:
1、知识与能力:使学生理解最小公倍数的意义,学会求特殊情况下两个数的最小公倍数。
2、过程与方法:通过小组合作学习,培养学生的团结协作精神。
3、情感与态度:提高学生的逻辑思维能力,培养学生科学的思维方法和创新意识。
教学重点:
使学生理解最小公倍数的意义。
教学难点:
学会求特殊情况下两个数的最小公倍数。
教具、学具:
多媒体计算机、课件,练习纸。
教学过程:
一、课堂引入:
你们坐过公共汽车吗?今天老师特意给大家带来个坐车的信息,请看:(电脑显示)
人民公园是1路和3路汽车的起点站。1路汽车每4分钟发车
一次,3路汽车每6分钟发车一次。这两路汽车同时发后,至少再过多少分钟又同时发车?
师:这正是我们今天要研究的内容。
二、新课:
1、这节课我们学习,(板书课题):最小公倍数。
2、看到这课题,你想知道什么?
3、刚才同学们提的问题很好,就让我们带着这些问题一起学习,请看:
出示例1:请顺次找出4的倍数和6的倍数。
师:齐读题目。
师:好!下面先自己找,找完后小组交流,看谁找得最快、最准确、用的方法最多。请把结果写在练习纸上。
师:谁来汇报4的倍数和6的倍数有哪些?
你是怎样找的?
你们都同意吗?
师:谁还有不同的找法?
(电脑同时在数轴上显示:)
板书:
4的倍数有:4、8、12、16、20、24、28、32、36......
6的倍数有:6、12、18、24、30、36......
师:非常聪明,找倍数的方法有:
A:原数分别乘以自然数1、2、3、4、5......。
B:连续加上原数的方法。
C:在数轴上找倍数的方法。
你认为那种方法找倍数较快,就用哪种方法找。下面仔细观察4的倍数和6的倍数(指着4和6倍数和数轴),师:你们发现了什么?小组讨论。
(12、24、36既是4的倍数又是6的倍数)电脑同时把它们变色、闪动。
师:你们同意吗?
师:对,12、24、36既是4的倍数又是6的倍数。所以这些数是4和6公有的倍数。
板书:4和6公有的倍数有:12、24、36......
师:就这几个吗?能不能把4和6公有的倍数都说出来?为什么?同位互相说说。
(不能,因为一个数的倍数的个数是无限的,所以它们公有的倍数的个数也是无限的)
师:个数是无限的。怎样表示呢?(用......,在电脑加上......);
师:把这句话自由读一遍。
师:说得好。请观察(显示)这两组数,按这两个思考题,四人小组讨论。
思考:①、两组数分别是谁的倍数?
②、这两组数有没有公有的倍数?如果有,请找出来。
电脑显示:3、6、9、12、15、18、21、24、27、30......
5、10、15、20、25、30、35、......
电脑显示:3的倍数。
5的倍数。
(15、30......)变色,闪动。
板书:3和5公有的倍数有:15、30......
师:两个数公有的倍数大家都会找,三个数公有的`倍数你们会找吗?
师:请看(电脑显示):
3的倍数有:3、6、9、12、15、18、21、24、27、30、33、
36、39......。
6的倍数有:6、12、18、24、30、36......
9的倍数有:9、18、27、36、45、54......
师:请把3、6、9公有的倍数找出来,找到后请告诉同桌。
(18、36......)变色,闪动。
板书:3、6和9公有的倍数有:18、36......
师:两个数有公有的倍数,三个数也有公有的倍数。这些公有
的倍数叫什么?其中最小的又叫什么?
请大家打开课本71页,带着问题自学课本,看课本是怎样说的?
(公倍数,最小公倍数)
师:齐读一遍。
师:刚才我们找出的这些公有的倍数,其实就是它们的公倍数。(电脑显示)
师:同桌找出这三组的最小公倍数各是几?(12、15、18闪动、变色)
师:这些最小公倍数你是怎样找的?
板书:倍数→公倍数→最小公倍数
教师小结上面找倍数的方法,加深印象。
师:谁还有不同的方法?
师:几个数有最小的公倍数,有没有最大的公倍数?为什么?
(一个数的倍数是无限的,因此几个数的公倍数也是无限的,所以没有最大的公倍数)
师:我们已学过用图表示一个数的倍数,同样也可以用图来表示几个数的倍数和公倍数,请看电脑:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
引导:(指图)12、24、36这些数既在这圈(4的倍数),又在那圈(6的倍数),所以这些是公倍数。
回应:刚才那道题(显示),你有正确的答案吗?为什么?(因为12是4和6的最小公倍数)
质疑:刚才学习了找最小公倍数,其实你们提出的问题已经解决了,还有什么不明白的地方?
过渡:刚才学习得很好,下面我们根据这三个思考题(显示),四人小组讨论,完成这些题目,完成后小组交流一下,你发现了什么?
思考:
①、找出下面各组数的最小公倍数。
②、你是用什么方法找最小公倍数的?
③、通过找最小公倍数,你发现了什么?
1、1)、2和4的最小公倍数是
2)、8和4的最小公倍数是
3)、12和36的最小倍数是
2、1)、2和3的最小公倍数是
2)、4和5的最小公倍数是
3)、3和7的最小公倍数是
师:谁来回答第一个思考题?
师:你是用什么方法找的?
师:你发现了什么?
板书:贴出规律。
师:齐读一遍。
游戏:刚才我们学习了两组特殊数找最小公倍数的方法,下面我们
就用这个知识来玩一个游戏。
1)、老师出一组数,你们找出他们的最小公倍数,看哪个同学反应最快?(卡片:2和5、3和6)
2)、同学们反应真快,同桌之间也来玩。一人出题,一人出答案,相互进行。
师:这个游戏下课后可以继续玩,也可以和家人一起玩;这个知识在生活中也应用很广,请看:
从今天开始,小明的妈妈每工作2天休息一天,爸爸每工作3天也休息一天,爸爸、妈妈第一次同时休息要经过几天?(12天)
师:你是怎样想的?
师:谁还有不同的想法?
师:同意6的请举手,同意12的请举手。
师:究竟是6还是12呢?大家讨论。
师:请看电脑老师。
出示辅助图:
代表工作,代表休息。
爸爸:
妈妈:
师:那个对呢?为什么?
三、社会调查,渗透思想教育:
在日常生活和学习中,你发现还有哪些有应用最小公倍数的?
四、课堂小结:
今天你学习到什么知识?
五、布置作业:
1、预习例2。
2、第75页第3、7题。
板书设计:
最小公倍数
倍数→公倍数→最小公倍数
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
《最小公倍数》教案 9
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。
3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
探究找公倍数和最小公倍数的方法。
教具准备:
多媒体课件
教学过程
一、创设情境
教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书:
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
二、尝试探讨
1、几个数的公倍数和最小公倍数的概念教学
我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?
师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)
师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的.倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)
我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)
师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?
师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)
师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)
师:这“其中最早的一天”,我们一起给它起个名字,叫什么?
(根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)
板书:
4的倍数:4、8、12、16、20、24、28、……
6的倍数:6、12、18、24、30、……
4和6的公倍数:12、24、……
4和6的最小公倍数:12
教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:
出示集合图:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
三、深化概念
师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。
请同学们把书翻到51页看例子,填一填
师:什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?
板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
这就是我们今天要学习的内容。(揭示课题:最小公倍数)
师:那么我们刚才是怎么找出最小公倍数的呢?
生说,师写(列举法)
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
4.[出示]找最小公倍数
2和69和186和245和353和9
3和57和54和99和11
让学生找出每组数的公倍数。
师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?
小组讨论,之后汇报。
生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生:2和6的最小公倍数是12,并不是它们的乘积。
生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。
师:你们还能发现了什么?
生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。
师总结
师;你们能举一些这类的例子吗?
5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数
3和610和83和95和46和59和42和76和8
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
四、利用最小公倍数解决生活问题,
出示:
(1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”
齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。
(2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
(设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)
五、小结
今天学习了什么内容?什么叫最小公倍数?
我们今天学习了求最小公倍数的哪几种情况?
怎样才能很快地求出它们的最小公倍数?
板书:找最小公倍数
一般关系列举法
倍数关系较大数
特殊关系
互质关系两数的乘积
《最小公倍数》教案 10
教学目标
1.使学生理解公倍数和最小公倍数的含义,能用排列法找出两个数的公倍数和最小公倍数。
重点难点
1.掌握公倍数和最小公倍数的概念。
主要教学方法
新授课讲解法尝试法
教学过程
板书设计:公倍数、最小公倍数的认识
例1.从小到大,顺次写出几个6的倍数和几个9的倍数,找出6和9公有的倍数,最小的一个公倍数是几?
6的倍数有:6、12、18、24、36、42......
9的倍数有:9、18、27、36、45、54......
6和9公有的倍数有:18、36......其中最小的一个是18
用图表示如下:
6的倍数9的倍数
6和9的公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
教师活动:预计时间()分钟
学生活动;预计时间()分钟
一. 准备题
1.什么叫约数?什么叫倍数?
2.用什么方法求一个数的`倍数?
3.一个数最小的倍数是什么?有没有最大的倍数?
二.教学新课
1.出示例1。
2.学生尝试
6的倍数有:6、16、18、24、30、36、42、......
9的倍数有:9、18、27、36、45、......
6和9公有的倍数有:18、36......
3.教师讲评:也可以用图来表示:
6的倍数9的倍数
6和9的公倍数
4.引导学生归纳出公倍数和最小公倍数的含义。
三.练一练:
1.第1题填在书上。
2.第2、3两题
3.独立练习:第4、5题
四.课堂总结:这节课学习了什么?你有什么收获?
学生口答
1.学生读题
2.尝试:指名板演,其余自练。
3.先理解图意,再填入公倍数。
1.指名说说
2.把书上的发现告诉同学。
3.看书上写的是不是与我们发现的相同?
4.想一想:
(1)有没有最大的公倍数?为什么?
(2)倍数、公倍数和最小公倍数有什么区别?
1.学生填在书上。
2.找出相同点和不同点。
相同点:找倍数和公倍数的方法相同。
不同点:第2题前3个括号里要有省略号;第3题前3个括号里不该填上省略号。
四.总结后做目标检测。
延伸练习
作业册70页
反馈与矫正
目标达成情况
《最小公倍数》教案 11
设计说明
1.从学生已有的知识经验出发,促进知识的构建。
本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让学生对公倍数和最小公倍数产生感性的认识。利用最大公因数的知识迁移,让学生自己抽象出公倍数和最小公倍数的概念,从而激发学生的学习兴趣,激活学生的思维。
2.体现学生的主体地位,提高教学的实效性。
《数学课程标准》的理念倡导,要注重角色转变,改变在以往的教学中只注重对学生知识的传授,而忽略了学生的主观能动性,要让学生学会自主学习,让学生主动参与课堂教学,在教学中尊重学生,凸显学生的主体地位。本设计在教学如何找两个数的最小公倍数时,放手让学生自主探究出方法,并观察公倍数和最小公倍数之间的.关系,让学生得到充分的思考,提高教学的实效性。
课前准备
教师准备 PPT课件 投影仪
学生准备 数轴卡片 彩色笔
教学过程
复习旧知,引入新课
1.复习。
分别说一说4和6的倍数分别有哪些。
4的倍数 6的倍数
4 6
812
1218
1624
20xx
…………
2.导入。
师:我们分别列出了4的倍数和6的倍数。前面我们已经学过两个数公有的因数,今天来学习两个数公有的倍数。
设计意图:分别说出4和6的倍数,一是复习倍数知识,二是为学习公倍数和最小公倍数作铺垫,使学生的思维自然过渡到新知。
公倍数与最小公倍数
1.探究概念。
(1)在数轴上表示数。
在数轴上分别找出表示4的倍数和6的倍数的点。(学生观察数轴,用两种不同颜色的笔在数轴上分别描出这些点)
(2)观察数轴,交流发现。
4和6公有的倍数有哪些?最小的是几?有没有最大的?(学生口答后,老师在投影仪上表示出来)
(3)迁移命名。
想一想我们已经学过的公因数和最大公因数,谁能给几个公有的倍数和其中最小的一个取名字?(公倍数 最小公倍数)
(4)理解意义。
请说一说什么是公倍数和最小公倍数。(学生口答:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数)
(5)集合表示法。
课件出示教材68页的集合圈。为什么集合圈里要写上省略号?(一个数的倍数的个数是无限的,几个数的公倍数的个数也是无限的)
2.练习。(课件出示)
把不超过50的3和6的倍数、公倍数填在68页“做一做”中的集合圈里,再找出它们的最小公倍数。请一位同学板演,其他同学填在教材上,然后集体订正。
设计意图:通过引导学生对具体问题的进一步研究,帮助学生加深对公倍数、最小公倍数意义的理解,使表象更加清晰,由此让学生亲身经历一个从具体到抽象的教学过程。
最小公倍数的求法
探究方法。
师:你是怎样求6和8的公倍数的?可以怎样表示?
(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。
(2)小组讨论,互相启发,再全班交流。
可能出现以下几种方法。
方法一 先分别写出6和8各自的倍数,再从中找出它们的公倍数和最小公倍数。
方法二 先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。
方法三 先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。
方法四 从小到大写出8的倍数,边写边判断是不是6的倍数,第一个6的倍数,就是6和8的最小公倍数。
《最小公倍数》教案 12
活动目的
1、理解最小公倍数的意义.
2、培养学生良好的思维品质和科学的思维方法.
活动题目
有两个自然数,它们的最小公倍数是48,那么这两个自然数各是多少?
活动过程
1、学生分小组讨论.
2、小组汇报.
3、师生共同研究方法,理解求最小公倍数的几种情况.
参考答案
由题意可知,48是所求两个自然数的最小公倍数,那么所求两个自然数一定是48的约数,因此我们可以找出48的所有约数,然后进行两两组合,便可找出符合条件的数组.
48的约数有:1、2、3、4、6、8、12、16、24、48经试验,符合条件的数组有:1和48,2和48,3和16,3和48,4和48,6和16,8和48,12和16,12和48,16和24,16和48,24和48,48和48.一共有14个数组.
活动说明
学生寻找符合条件的答案的过程,实际上就是培养学生思维有序化的`过程.
约分
教学目标
1.理解和掌握约分的方法.
2.掌握最简分数的概念.
教学重点
掌握约分的方法.
教学难点
训练学生很快看出分子、分母的公约数,并能够准确判断约分的结果是不是互质数.
教学步骤
一、铺垫孕伏.
1.口算.
135÷552÷1333÷356÷799÷3
45÷966÷1124÷836÷12125÷5
2.投影出示下列各题,学生自由回答.
(1)说出能被2、3、5整除的数有哪些特征?
(2)说出下面每组两个数的公约数.
18和2412和309和72
(3)指出下面哪两个数是互质数.
3和812和85和27和4
(4)在括号里填上适当的数,并说出你的根据.
二、探究新知.
(一)教学例1.
例1.把化简.
1.启发学生思考化简的实际含义.
教师提问:看到例题1这个题目,你想做些什么呢?
学生回答:把分数的分子分母都变小.根据分数的基本性质能把化成分子、分母都比较小的分数.
2.分组讨论:结合分数的基本性质,怎样将化简?
(1)分母24、分子18有公约数2,先用公约数2去除分子、分母
(板书:)
(2)9和12还有公约数3
(板书:)
教师明确:分子和分母是互质数就不能再化简了,这种过程叫约分.
3.引导学生总结归纳出约分的意义.
板书:
4.揭示最简分数的概念.
5.反馈练习.
指出下面哪些分数是最简分数.
(二)教学例2.
例2.把约分.
1.学生独立解答,集体订正.
2.师生共同小结:在约分时要把分子、分母的公约数记在脑子里,直接口算,通常要
除到得出最简分数为止.如果一下能看出分子和分母的最大公约数,直接用它们的最大公约数一次约分比较简便.
3.反馈练习.
把下面的分数约分.
三、全课小结.
通过今天的学习,谈谈你学到了哪些新知识?
四、随堂练习.
1.回答.
(1)判断下面哪些分数是最简分数,并说出为什么?
(2)观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公
约数3?
2.下面哪些分数没有约成最简分数?
五、布置作业.
把下面各分数约分.
《最小公倍数》教案 13
教学目标
1.掌握公倍数、最小公倍数两个概念.
2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.
教学重点
建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.
教学难点
理解求两个数最小公倍数的算理.
教学步骤
一、铺垫孕伏.
1.导入:这节课我们开始学习有关最小公倍数的知识.
(板书:最小公倍数)
2.复习倍数的概念.
二、探究新知.
教学例1
例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?
4的倍数有:4、8、12、16、20、24、28、32、36……
6的倍数有:6、12、18、24、30、36……
4和6的公倍数有:12、24、36……
其中最小的一个是12.
1、学生分组讨论总结公倍数、最小公倍数的意义.
2、用集合图表示4和6的公倍数.
3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?
明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.
4、反馈练习.
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.
明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.
(二)教学例2
引入:我们用分解质因数的方法求两个数的最小公倍数.
例2:求18和30的最小公倍数.
1、用短除式分别把18和30分解质因数.
板书:18=2×3×3
30=2×3×5
教师提问:18的倍数必须包含哪些质因数?
(18的倍数包含18的所有质因数)
30的倍数必须包含哪些质因数?
(30的倍数包含30的所有质因数)
18和30的公倍数必须包含哪些质因数?
(既要包含18的所有质因数,又要包含30的所有质因数)
2、观察集合图:18和30的最小公倍数应包含哪些质因数?
教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.
3、小组讨论:如果少一个或多一个质因数行不行?
教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的.公倍数,但不能保证是最小公倍数.
板书:
18和30的最小公倍数是2×3×3×5=90
4、反馈练习.
(1)先把下面两个数分解质因数,再求出它们的最小公倍数.
30=()×()×()
42=()×()×()
30和42的最小公倍数是()×()×()×()=()
(2)A=2×2B=2×2×3
A和B的最小公倍数是()×()×()=()
(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?
可能错在哪里?
5、求最小公倍数的一般书写格式.
①引导学生把两个短除式合并成一个.
板书:
②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.
③反馈练习:求30和45的最小公倍数.
④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.
⑤反馈练习:求下面每组数的最小公倍数
6和824和2028和2116和72
三、全课小结.
今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.
四、随堂练习
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.
2.判断.
(1)两个数的积一定是这两个数的公倍数.()
(2)两个数的积一定是这两个数的最小公倍数.()
五、布置作业.
求下面每组数的最小公倍数.
12和1530和4036和5422和33
《最小公倍数》教案 14
教学目标:
1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。
2、通过输理、比较,建立相关概念的关系。
3、在游戏、应用中体验数学的趣味性。
基本教学过程:
一、基本练习
1、复习找因数、公因数的方法:
练习第一题。
学生填写后,说说你是怎么想的。巩固找公因数的方法。
2、复习约分的方法:
练习第二题先约分,再连线。
二、运用知识模型:
1、复习分数的意义、约分等知识的综合运用。
第3题。
让学生自己用分数表示,并交流自己的思考方法。
2、第4题。
先让学生找出分数,并说说自己的思考方法?
3、第5题。
本题开放性强,学生可以自由分割,并用分数表示。
三、思考题:
本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的`公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。
四、实践活动:
先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。
四、总结:华体会可以注销账号不 :
《最小公倍数》教案 15
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
教学过程:
一、一、创设活动情境,进行找倍数活动:
二、出示题目和8月份的日历:
1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。
2、把这些数写下来。
二、自主探索,总结找两个数的公倍数的方法:
1、观察这些数有什么特点?
2、再观察两人同时去少年宫的日子有什么特点?
3、师总结:揭示公倍数和最小公倍数的概念。
填一填:第48页
①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的'理解。
②学生讨论交流找公倍数的基本方法。
③还有其他方法吗?(鼓励学生用其他方法找公倍数)
4、师总结:找公倍数和最小公倍数的方法
三、拓展引思:
1、第49页练一练
第一、二题
让学生独立填一填,再交流。
华体会可以注销账号不 :
①15和5014和3512和484和7
说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。
注意:教师出题时,数字不要太大,要注意把握难度要求。
②练一练,第42页第1题。第2题。第3题。
③第43页第4题:
让学生找出这几组数的公因数后,说说有什么发现?
④第43页第5题:
⑤数学探索:
三、总结。
《最小公倍数》教案 16
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
重点、难点:学会求三个数的最小公倍数的方法。
教具、学具准备
教 学过程
备 注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2×515=3×5,那么10和15的最小公倍数是()
谁能说一说最小公倍数的质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3):因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备 注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的.三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加“。”内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
《最小公倍数》教案 17
教学内容 :
公倍数、最小公倍数的概念及求两个数的最小公倍数的方法。课本 P88~90 例 1、例 2。
教学目标
1.知识与技能:理解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
重点难点:
求两个数最小公倍数的方法。
教学过程:
一、复习旧知识
1、写出下面各数的倍数
3的倍数有:()
2的倍数有:()
2、学生汇报填写结果,教师板书记录
3、说一说,你对倍数有什么理解?
学生回答
二、创设情境
出示阿凡提的故事
1、教师:请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?我们如何解决这个问题?
教师:这就是我们这节课要学习的内容:最小公倍数(板书)
2、出示日期,让学生找出巴依老爷休息的日期和标出账房先生休息的日期
3、展示问题(让学生回答)
(1)老渔夫休息的日子有哪几天?4,8,12,16,20,24,28 它们都是()的倍数
(2)小渔夫休息的日子有哪几天?6,12,18,24,30
它们都是( )的倍数
(3)老渔夫和小渔夫同时休息的日子有哪几天?12,24
它们是( )和()共同的倍数
(4)我最早应在几号去拜访他们?12
4、总结问题后,导出课题:最小公倍数
5、出示问题:(通过上面的问题以及以前学过的最大公因数的概念我们可以知道)
(1)什么叫公倍数?
(2)什么叫做最小公倍数?
6、学生:回答
教师:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
三、讲授新课
1、我们已经知道了什么是最小公倍数,那么我们就一起来试一试
(1)、找出6和9的最小公倍数
6的倍数:6 ,12 ,18,24 30,36……
9的倍数:9,18,27,36……
6和9的公倍数:18,36……
6和9的最小公倍数:18
教师:同学们会找两个数的最小公倍数了吗?
学生:会
(2)求3和2的最小公倍数
全班交流并板书。
还可以这样表示
3的倍数 2的倍数
2
(3)怎样求6和8的最小公倍数?
四、通过这几题的学习,观察一下: 观察一下,两个数的公倍数和它们的最小公倍数之间有什么关系?
学生:
教师:我发现:两个数的`公倍数都是它们最小公倍数的倍数
五、归纳总结:
找最小公倍数的方法
(1)先分别找出两个数的倍数
(2)再找出两个数的公倍数
(3)其中最小的一个就是它们的最小公倍数。
六:随堂练习:
1、求下列每组数的最小公倍数。
2和8 3和8 6和156和9
4和106和8 4和108和10
2、下面的说法对吗?说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
3、练习:六盘水火车站是12路和13路公交车的起点站。12路每3分钟发车一次,13路公交车每5分钟发车一次。这两路公交车同时发车以后,至少再过多久又同时发车?
七、渗透法制教育《中华人民共和国道路交通安全法》
第六十二条 行人通过路口或者横过道路,应当走人行横道或者过街设施;通过有交通信号灯的人行横道,应当按照交通
信号灯指示通行;通过没有交通信号灯、人行横道的路口,或者在没有过街设施的路段横过道路,应当在确认安全后通过。 ? 第五十一条 机动车行驶时,驾驶人、乘坐人员应当按规定使用安全带,摩托车驾驶人及乘坐人员应当按规定戴安全头盔。
第六十六条 乘车人不得携带易燃易爆等危险物品,不得向车外抛洒物品,不得有影响驾驶人安全驾驶的行为。
问题结束:你们现在知道阿凡提是哪一天去巴依老爷家的了吗?
八:布置作业
《最小公倍数》教案 18
教学目标
1.使学生掌握求两个数的最小公倍数的两种特殊情况,能正确、合理地求两个数的最小公倍数。
重点难点
求两个数的最小公倍数的两种特殊情况。
主要教学方法
新授课谈话法讨论法
操作过程
求12和36的最小公倍数求9和5的最小公倍数
〔12,36〕=2×2×3×1×3=36〔9,5〕=9×5=45
如果大数是小数的倍数,那么大如果两个数是互质数,数就是这两个数的最小公倍数。那么这两个数就是它们的最小公倍数。
教师活动:预计时间()分钟
学生活动;预计时间()分钟
一.复习准备×
1.填空。
(84)=2×2×3×7
(70)=2×5×7
()和()的最小公倍数是:
(2×2×3×5×7=420)
两个数的.最小公倍数是两个数()各自()的积。
2.说出用短除法求两个数的最小公倍数的步骤。
3.用短除法求45和60,12和36,9和5的最小公倍数。
二.教学新课
1.两个数是倍数关系。
12和36的最小公倍数是36。
说出下面各组数的最小公倍数。
17和5118和10815和225
2.两个数是互质数
如9和5是互质数,它们的最小公倍数是45。
说出下面各组数的最小公倍数。
8和913和178和72
3.练一练第3题
三.介绍求最小公倍数的一种简便方法--大数翻倍法。
四.巩固练习。
1.填空
(1)如果a能被b整除,a和b的最大公约数是(b),最小公倍数是(a)。
(2)如果a和b是互质数,a和b的最大公约数是1,最小公倍数是(a×b)
2.练一练第4题
五.小结:求两个数的最小公倍数,要认真看清题目,选用合理的方法。
六.作业:目标与检测第68页
1.学生口答
2.连起来说一说
1.指名说
3.同桌互说
指名板演,其余自练。
1.观察这组数:12和36有什么关系?
2.归纳:如果大数是小数的倍数,那么大数就是这两个数的最小公倍数。
1.观察这组数,从这里你发现了什么?
2.归纳:如果两个数是互质数,那么
这两个数的积就是它们的最小公倍数。
3.学生口答
先填空,再连起来说一说。
延伸练习
反馈与矫正
目标达成情况
《最小公倍数》教案 19
教学内容:
教科书五年级下册第22--23页,练习四1--4题。
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、培养学生推理、归纳、总结和概括能力。
教学重点:
学会用列举法找出两个数的最小公倍数。
教学难点:
理解公倍数、最小公倍数的意义。
教学过程:
一、以趣激疑
比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)
师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )
师:同学们,今天我们就一起来研究有关“公倍数”的问题。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。
请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?
让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)
同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。
全班交流,汇报。
师板书:巴依老爷的休息日:4、8、12、16、20、24、28
账房先生的休息日:6、12、18、24、30
他们八月份的共同休息日:12、24
这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。
你们猜猜阿凡提会哪一天去巴依老爷家呢?
师板书:最早的'共同休息日:12
师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。
师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)
你还有其他的表示方式吗?(集合圈的图示方式)
谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。
2、加深学生对公倍数和最小公倍数现实意义的理解。
现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?
细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。
引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。
师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)
3、归纳求最小公倍数的方法。
师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)
4、看书22--23页内容,你还有什么问题?
师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?
教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。
三、解决问题,深化理解
1、互质数和倍数关系的数的最小公倍数
师出示书第90页的“做一做”,让学生独立解决,填写在书上。
观察一下这里的每一组中的两个数有什么关系?
它们的最小公倍数与这两个数有什么关系?
(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)
提问:根据刚才的分析,你有没有发现什么规律?
(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)
2、打电话游戏。
师:梁老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?
师:你是怎样知道的?
师:你们分析得多好啊!真了不起!
四、课堂小结
今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?
五、作业
运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。
《最小公倍数》教案 20
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:
最小公倍数的概念。
教学难点:
两个数最小公倍数的算理。
教法:
新授、小组合作、自主探究
学法:
练习、自学、小组合作
课前准备:
课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的`公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
《最小公倍数》教案 21
教学目标:
1.让学生通过具体的操作和交流活动,认识公倍数与最小公倍数,会用举例的方法求10以内两个数的最小公倍数。
2.让学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力。
3.让学生参与学习活动的过程中,体验学习和探索活动的乐趣,增强对数学学习的信心。
教学重点:
认识公倍数与最小公倍数,会求10以内两个数的最小公倍数。
教学难点:看懂并会填写用集合图表示的两个数的倍数和公倍数,理解在不同情境下倍数、公倍数的有限与无限。
教具准备:
1、长3厘米、宽2厘米的长方形纸片。
2、边长6厘米和8厘米的正方形。
教学过程:
一、游戏引入,认识公倍数。
游戏激趣
师:今天是什么日子?(圣诞节)
对啊,圣诞老爷爷来给我们送礼物了,瞧!(出示图)
我们每一位同学对应的都有一个学号,学号是3的倍数的同学,你们的礼物在圣诞帽里;学号是5的倍数的同学,你们的礼物在圣诞袜里。(请请学生站一站,选一两个说一说)(出示图,分别在两幅图的下面写上学号。)
观察一下,谁是今天最幸运的,为什么?(15、30号)为什么?
(图片:把15、30移至中间,闪烁。)
师:像这样3、5、15这样的数有怎样的关系呢?今天这节课我们就来研究这样的问题。
二、教学例1
1、操作活动。
出示边长6厘米、8厘米的两个正方形。
如果用一些长3厘米、宽2厘米的长方形纸片分别铺在这两个正方形上,你觉得可以正好铺满哪个正方形?
2、学生分组活动,在小组里铺一铺,说一说。
3、汇报交流。
通过刚才的活动,你们发现了什么?
为什么用这样的长方形纸片能正好铺满边长6厘米的正方形?
引导学生观察正方形边长与长方形的长、宽之间的关系来回答:
(1)用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(出示图)
(2)铺边长8里面的正方形呢?每条边都能正好铺完吗?
(8÷3=2……2,8÷2=4)(出示图)
(3)讨论:还能有边长是多少厘米的正方形也能用这样的长方形来铺满?(板书:12厘米、18厘米、24厘米……)
说说你的理由。
明确:12、18、24……除以2和3都没有余数。
演示:铺满边长是12厘米的正方形(师:横里铺几个?铺了几行?)
(4)6、12、18、24……这些数与2有什么关系?与3呢?(6、12、18、24……既是2的倍数,又是3的倍数。)
4、只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书)
(板书课题:公倍数)
5、2和3的公倍有多少个呢?为什么?
(用省略号来表示)
6、8是2和3公倍数吗?为什么?(尽管8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数)
:同学们,要解决例1这样的题目就要学会找两个数的公倍数。那么怎样去找两个数的公倍数呢?
二、教学例2
1、出示例2。
6和9的公倍数有哪些?(其中最小的公倍数是几?)(后面出示)
(1)你准备怎么去找,同桌交流方法
师:会了吗?请你们在草稿本上写一写。
师生交流,说说你是怎样想的?(展示)为什么它们是6和9的公倍数?
(2)有没有不一样的方法?(讨论)
(师提示:先找9的倍数,想一想6和9的倍数公倍数是不是都在9的倍数里?能不能从中找出6的倍数来?)
学生在草稿本上写一写,交流(展示)
:可以先找9的倍数,再在9的倍数里找6的倍数。
(3)学生说另一种方法:先找6的倍数……
学生在草稿本上写一写,交流(展示)
2、6和9的公倍数中最小是几呢?(显示于例题上)
因此我们就说18就是6和9的最小公倍数。(板书课题:最小公倍数)
3、我们有这样的3种方法找两个数的公倍数,请你一下这3中方法。
4、那么(指着板书)2和3的最小公倍数是多少?
5、我们可以用集合图来表示6的`倍数、9的倍数,6和9的公倍数。
(出示集合图,一半一半地、边问边出示)
(课件显示将两个集合圈向中间靠拢,形成交叉状。)
师:中间部分应该填什么?(课件显示将两个集合圈中的相同的倍数移动到交叉部分,并在下面标出“6和9的公倍数”)
师:左边圆圈里的数表示?右边圆圈里的数表示?两个圆圈相交的部分又表示什么?(课件闪烁圆圈)
6、完成练一练。
先在2的倍数上画“△”,在5的倍数上画“○”,然后完成填空。
汇报交流。(展示)
师:说说你是怎样想的?
问:这里的省略号哪些同学点了?哪些同学没点?
师:像这样没有明确范围的我们可以加上省略号。
问:2和5的公倍数有什么特点?(是10的倍数,个位上是0的自然数)
三、巩固练习
1、完成练习四第1题。
(1)独立完成。
(2)汇报校对。(先填6和8的公倍数)
这里需要写省略号吗?为什么?
2、完成练习四第2题。
(1)出示空白表,师生交流怎样看、怎样填?
(2)学生完成填表。
(拓展)
师:这里都是求两个数的最小公倍数,如果让你求4、5、6三个数的最小公倍数,是多少呢?想一想。
补充表格,学生观察。
师:两个数有公倍数,三个数也有公倍数,四个、五个、……同样也有公倍数。
四、课堂
今天学习了什么内容?说说看什么是两个数的公倍数和最小公倍数?
游戏:(出示)圣诞帽、圣诞袜
4的倍数6的倍数
师:现在学号是几的同学最幸运?
怎样设计让尽量多的人幸运?
《最小公倍数》教案 22
教学目标
(一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。
(二)培养学生仔细、认真的做题习惯和比较的思维方法。
(三)培养学生观察、分析、比较的能力。
教学重点和难点
最大公约数和最小公倍数异同点的比较。
教学用具
教具:小黑板,投影片。
学具:判断卡,选择卡。
教学过程设计
(一)复习准备
教师:
①什么叫最大公约数和最小公倍数?
②怎样求最大公约数和最小公倍数?
③求下面各题的最大公约数和最小公倍数?(口答)
8和 16 13和 26 2和 9 7和 15
教师:对上面几道题你是怎么想的?各有什么特点?你能发现什么规律?
明确:
①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1.出示例5。
求28和42的最大公约数和最小公倍数。(要求学生独立完成。)
学生口述教师板书。
28和42的最大公约数是:
2×7=14
28和42的最小公倍数是
2×7×2×3=84
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例5怎样做简便?(由学生完成。)
2.出示做一做。
根据下面的短除,你能很快说出24和36的最大公约数和最小公倍数吗?
(三)巩固反馈
1.求下面各组数的最大公约数和最小公倍数。
30和18 75和35 16和72
9和31 20和12 100和30
2.判断正误并说明理由。
①互质的`两个数没有最大公约数;( )
②两个数的最小公倍数,是这两个数的最大公约数的倍数;( )
③12和8的最大公约数:2×2×3×2=24,最小公倍数:2×2=4;( )
④36和24的最大公约数:2×2=4,最小公倍数:2×2×9×6=216;( )
⑤17 和51。
17和51的最大公约数是17,最小公倍数是:17×51=867。( )
3.选择正确答案的序号填在( )里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是( ),最小公倍数是( )。
①1 ②甲 ③乙 ④甲×乙
(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是( ),最小公倍数是( )。
①2×3
②2×3×2
③2×3×5
④2×3×2×5
4.思考题。
怎样用一个短除式求下面三个数的最大公约数和最小公倍数。
8,16和 24。
(四)课堂总结(学生总结)
1.求两个数的最大公约数,最小公倍数用一个短除式。
2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本80页练习十六,3,4,5。
【《最小公倍数》教案】相关文章:
《最小公倍数》教案05-17
【推荐】《最小公倍数》教案05-17
(推荐)《最小公倍数》教案05-17
《最小公倍数》教案15篇【实用】05-17
《最小公倍数》教案(合集15篇)05-17
[必备]《最小公倍数》教案16篇09-28
[实用]《最小公倍数》教案15篇05-17
《最小公倍数》教学设计05-13
五年级数学教案最小公倍数04-09