分数乘法教案【经典15篇】
作为一位优秀的人民教师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?下面是小编收集整理的分数乘法教案,仅供参考,欢迎大家阅读。
分数乘法教案1
教学内容:
教科书P39——40,练一练,练习八6——11
教材简析:
在三年级下册,学生已经学习了根据分数的意义,用整数乘、除法解决求一个数的几分之几是多少的实际问题。这里再次安排教学,一是让学生理解求一个数的几分之几是多少可以直接用乘法计算,从而扩展对分数乘法意义的理解,二是通过沟通两种方法之间的联系,促使学生加深对相关数量的理解,提高解决实际问题的能力。
教学目标:
1.使学生结合具体情境,学习用分数乘法解决“求一个数的几分之几是多少”的实际问题,完善对分数乘法意义的理解,提高正确计算相关分数乘法式题的能力。
2. 丰富对用分数表示的数量关系的认识,使学生经历解决实际问题的探索过程,进一步培养观察、比较、分析、推理的能力。
3.使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高数学学习的信心。
教学重点:
掌握求一个数的几分之几是多少,可以用乘法计算。
教学过程:
一、谈话激情,导入新课
谈话:昨天我们已经学习了求几个几分之几是多少的实际问题,掌握了分数与整数相乘的计算方法。今天,我们将继续学习有关整数与分数的计算方法,以及相关的简单的实际问题。
[设计意图:开门见山,让学生明确本节课的学习内容是上节课的延续,使学生在明确的学习目的指引下,迅速投入到新知识的学习中。]
二、合作探索,获取新知
(一)小黑板出示P40,练一练第1题的图
提出要求:涂色表示“12的”、“20的”,涂完后说说你是怎么想的?怎么列式计算?在小组内交流后组织全班交流。
在交流中使学生明确:涂色“12的”,就是把12个○看作单位“1”,平均分成3份,涂色表示出这样的.1份,列式:12÷3=4;涂色 “20的”,就是把20个□看作单位“1”,平均分成5份,涂色这样的4份,列式20÷5×4=16
[设计意图:把练一练第一题提前作为学习新知的铺垫 ,旨在帮助学生唤醒已学过的求“一个数的几分之几是多少”的一般方法和分数乘法的意义。为学生学习新知识作好心理和知识上的准备。]
(二)例题教学,探索新知
谈话:刚才我们用之前学过的分数意义的知识,用整数的乘、除法解决了这两个问题,那么,像这样的有关分数的实际问题,是否有更简单的方法来解决呢?下面就让我们一起来研究。
1.出示例题及图,交流题目中告诉了我们哪些条件?
引导学生看图描述题中两个分数的具体含义。
(估计学生能够说明:把10朵绸花作为单位“1”,红花的朵数是10朵的,绿花的朵数是10朵的。)
[设计意图:看图说题意,可以帮助学生理清题目中相关数量之间的内在联系,有利于学生学习新的知识。]
2.探究解决问题的方法
问题⑴:红花有多少朵?
①通过前面的铺垫估计学生能很快列式10÷2=5(朵);
②教师说明:像这样求10朵的是多少的问题,还可以直接用乘法计算。列式10×= ( )
③引导学生比较这两种计算方法,有什么想法?
引导学生在比较中认识到:10朵的,就是把10朵花平均分成2份,求每份是多少;而计算10×,要先约分,也就是用10除以2,得出一份是多少。体会两种计算方法思路的一致性。
得出结论并板书:求一个数的几分之几是多少,可以用乘法计算。
问题⑵:绿花有多少朵?
师:你能用求红花朵数的方法,求出绿花的朵数吗?
(有了求红花朵数的经历,估计学生能很快地列式
①10÷5×2=4(朵)②10×=4(朵)。)
进一步引导学生比较这两种方法,体会它们之间内在的联系。
(估计学生通过问题⑴的比较,能够认识到绿花的朵数是10朵的,也就是把10朵花平均分成5份,绿花是其中的2份;计算10×,也要先约分,也就是先把10÷5,求出1份是多少,再乘2求出2份是多少。)
通过比较,再一次得出结论:求一个数的几分之几是多少,可以用乘法计算。
[设计意图:这部分的教学是本课的重难点,求红花和绿花的朵数,每个问题都用了两种方法解决,通过这两种方法的列式、计算与比较,得出“求一个数的几分之几是多少,可以用乘法计算。”的知识点,使学生的数学思维得到了进一步的发展,同时培养了学生的分析、推理能力]
三、组织练习,巩固新知
1.完成P40,练一练
第1题:在导入时,学生已经通过涂色理解了题目的意义并用以前学过的方法解决了这一问题,此时再看这题,旨在用今天所学的知识解决这一问题,列式:12×、20×,并和同桌说说这样列式的理由。
第2题,通过填空,引导学生理解:求根(或根)长多少米,就是求这根钢管的(或)是多少,进一步得出结论:求一个数的几分之几,可以用乘法计算。
2. 完成练习八第6题
通过一组实际问题的比较,沟通分数乘法意义与整数乘法意义的内在联系。知道“求3瓶是多少毫升”就是求3个900毫升相加的和;求“瓶是多少毫升”,就是求900毫升的是多少;求小明喝了多少毫升,就是求900毫升的是多少。
3.完成练习八第7、第8题
学生独立完成后说说你是怎么想的?体会分数乘法的实际问题在生活的运用。
4.完成练习八第9题
学生独立读题后交流,明白题目意思,“估计这个月哪个城市空气质量达Ⅰ、Ⅱ级的天数最多”,可以直接比较分数的大小;“计算各有多少天”,是以这个月的总天数“30天”为单位“1”进行计算的,计算得出结果后,再与估计的结果进行比较,检验估计的准确性。
5.完成练习八,第10、第11题
通过读题、列式计算,使学生认识到“求一个数的几分之几与求一个数的几倍一样,都可以用乘法计算”。
[设计意图:通过一系列的练习,继续巩固“求一个数的几分之几,可以用乘法计算”的知识。让学生在解答问题的过程中,体会分数乘法与整数乘法的内在联系,感受分数乘法是整数乘法的进一步发展,帮助学生逐步形成完整的知识结构。]
四、全课总结
今天我们学了什么?你有什么收获?
[设计意图:通过简单的小结,帮助学生梳理本课所学知识点,有利于学生新知识的建构。]
[总评:本课教学以学生为主体,紧密联系学生生活实际,使学生经历了解决问题的探索过程,在观察、比较、分析、推理等数学活动中,积极主动的获取了新的知识,同时提高了学生应用数学的能力,感受数学知识和方法的应用价值,提高了学生数学学习的自信心。]
分数乘法教案2
教学目标
3、使学生掌握分数乘法和加、减法混合运算的运算顺序,并能正确地进行计算,提高计算能力。
4、使学生能运用乘法的运算定律使一些分数乘法和加、减法混合运算的计算简便,能合理、灵活地进行一些混合运算,提高计算能力。
教学重难点
乘法和加、减法混合运算的运算顺序,正确地进行计算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习
二、教学新课
三、 巩固练习
四、小结
五、作业
1、P24复习题
说说每道题的运算顺序。
2、问:在没有括号的算式里,如果有乘法又有加、减法,按怎样的顺序运算?在有括号的算式里,要按怎样的顺序运算?
1、引入新课
2、教学例2
说说这道题要先算哪一步再算哪一步?为什么要按照怎样的'顺序运算?
学生板演。
3、教学例2
(1)说明:同样的,整数乘法的交换律、结合律对于分数乘法同样适用。
(2)出示例2
说说这道题例的数据有什么特点?这样算简便吗?为什么这样可以简便?应用了什么运算定律?
按简便算法计算结果。
3、练一练
想先那些题可以用简便算法?
指名板演。
2、练习五2
做书上。第三题为什么可以用简便算法。
3、练习五3后两题
为什么这样算?
练习五1、3、5
课后感受
由于内容比较简单,放手让学生自己学习,学习气氛好。注意强调运算顺序。
分数乘法教案3
一、学情分析:
我们六(5)班有学生48人,男生有19人,女生有29人,自上学年实行小组合作学习以来,每个学生都有了明确的学习目标,在平时学习中主动、努力,每组中的1、2号对3、4号的帮扶起了很大的作用,使这部分学困生在思维方法和技能上有了进一步的提高,在数学情感上,能主动地参与到学习中来。
二、教材分析:
(一)教学内容
本册内容共有8个单元。一单元分数乘法,二单元分数除法,三单元比,五单元分数四则混合运算,这四个单元所属领域是数与代数。四单元的圆所属领域是空间和图形。六单元的统计,七单元的可能性,八单元的百分数所属领域是统计与概率。美的奥秘,数学与生活,远离肥胖所属领域是综合应用。
(二)教学重难点
教学重难点有:分数乘除法应用题,按比例分配应用题,如何求圆的周长和面积,化简比和求比值的区别和联系。
三、教学目标:
(一)知识与技能目标
1、能结合具体情境理解分数乘除的意义,能解决有关分数的实际问题。
2、理解比的意义和性质,会解决有关按比例分配的实际问题。
3、结合具体情境,理解百分数的意义,能用百分数解决问题。
4、掌握圆的周长和面积的计算方法,能够运用圆的'周长和面积公式解决简单的实际问题。
5、认识众数、中位数,会求一组数的众数和中位数,会对一组数据作出合理的分析推理。
6、结合具体实例,设计一个符合要求的方案。
(二)数学思考目标
让学生经历知识的形成过程,感受“转化”和“数形结合”的数学思想方法。在观察、操作、思考、交流等活动中,进步发展抽象概括推理的能力。
(三)情感态度目标
1、能积极参加数学学习活动,对数学有好奇心和求知欲,并获取成功的学习体验,增强学习数学的信心。
2、体会数学与人类生活的密切联系,感受数学的严谨性和数学结论的确定性。
3、学会倾听与质疑,养成独立思考的好习惯。
四、教学措施:
1、整合学习内容,强化数学知识间的联系及学科间的融合。
2、恰当确立每节课的教学内容,树立单元教学思想,在重点例题上下功夫。
3、精心设计数学活动,让学生在探索中理解数学知识,掌握数学方法。
4、注重数学思想方法的渗透和解决问题策略的方法。在本册中结合教学内容渗透“极限”和“数形结合”的数学思想。在教学中学生经历“现实问题——数学问题——联系已有知识经验寻找方法——归纳概括总结公式——运用公式解决现实问题”这一首尾相接的全过程。
5、改进评估方法实行小组“捆绑式”评价方法和个人评价方法相结合的方式。评价形式也有生生互评、师生互评等多种形式。
五、课时安排
1、分数乘法
理解一个数和分数相乘的意义,理解分数乘分数的算理理解分数乘法的意义,掌握分数乘法的计算方法,会求一个数几分之几的实际问题
2、分数除法
分数除法的计算方法,
解决已知一个数的几分
之几是多少,求这个数的实际问题理解分数除法的意义,会计算,会解决实际问题。
3、比
理解比的意义和性质理解比的意义,会求比值掌握比的基质,会化简比。
4、圆
圆的周长和面积
认识圆的特征,会正确计算圆的周长和面积。
5、分数四则混合运算
分析稍复杂的有关分数分析问题和解决问题的能力。四则混合运算问题的数量关系及理解四则混合运算的顺序。
6、统计
理解众数、中位数的意义,选择合适的统计量描述数据的特征。会求一组数的中位数、众数,会选择合适的统计量描述数据,分析问题。
7、可能性
能按要求根据可能性大小设计方案
能根据可能性大小设计符合要求的方案
8、百分数
百分数的意义,解决一个数是另一个百分之几的问题能进行百分小的互化,解决实际问题
分数乘法教案4
一教育
21jy_1155220435 20xx-09-29 00:27苏教版5.09M 3个学币1星级
二分数乘法
本单元是在学生掌握整数乘法,理解分数的意义和基本性质,能正确计算分数的加、减法的基础上进行编排的。通过学习分数乘法的计算,不仅可以解决有关的实际问题,而且能为后面学习分数除法和百分数奠定重要基础。本单元的内容包括分数与整数相乘、分数与分数相乘、分数连乘以及倒数的认识。教学要求是使学生理解分数乘法表示的意义,理解和掌握分数乘法的计算法则,并能比较熟练地计算分数乘法,能应用分数连乘计算和解决求一个数的几分之几是多少的简单实际问题。
第1课时分数与整数相乘
教材第28~29页例1及相关练习。
1.使学生通过自主探索,理解分数与整数相乘的意义和整数乘法相同,初步理解分数与整数相乘的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
重点:理解分数与整数相乘的意义,掌握其计算方法。
难点:分数与整数相乘的意义和计算法则。
课件。
师:同学们,我们已经学会了整数和小数乘法的计算方法,现在,我们开始来学习分数乘法的计算方法。
复习:(1)5个12是多少?怎样列式?
(2)++=++=
学生做完第(1)题后,提问:整数乘法的意义是什么?
做完第(2)题后,提问:这两道题各有什么特点?
师:计算第(2)题第2个算式有没有更简便的方法呢?
师:带着这个问题,今天我们就来学习分数与整数相乘。(板书课题。)
1.分数与整数相乘的意义。
课件出示教材第28页例1中长方形直条图,标注出长是“1米”。
师:做一朵绸花用米绸带,你能在图中涂色表示出这个已知条件吗?
出示问题:小芳做3朵这样的绸花,一共用绸带几分之几米?
师:你能在图中涂色表示出来吗?(先由学生回答,再涂色。)
师:解决这个问题可以怎样列式?
(指名回答,教师板书。)
生:++。
师:求3个相加的和还可以用乘法计算,你会列式吗?
生:3×。
教师板书:×3或3×。
师:这个算式中的是什么数?式中的3是什么数?
师:由此可以看出,分数与整数相乘的意义和整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
2.探索分数与整数相乘的计算方法。
(1)学生尝试计算×3。
师启发:×3的积是多少?你能联系已有的知识从不同角度说明吗?
生:。
学生试做,教师启发总结分数与整数相乘的计算法则。
师:×3=,由此你发现分数与整数相乘是怎样计算的?
生:用分数的分子乘整数,所得的积作为积的分子,原分数的分母作为积的分母。
师:以后计算分数乘整数时,不必再写加法算式,直接根据分数与整数相乘的计算法则进行计算。
(2)解决例题的第(2)题。
师:小华做5朵这样的绸花,一共用绸带几分之几米?
学生尝试列式计算,指名板演。
点评时明确:计算结果不是最简分数时,要约成最简分数。
(3)总结计算方法。
师:比较刚才两道算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?在小组里交流。
小结:分数与整数相乘,把分数的分子与整数相乘的积作分子,分母不变。计算时能约分的可以先约分再计算出结果。
1.教材第29页“练一练”。
第1题让学生按要求在图中涂色,然后列式计算。第2题指定学生板演,集体讲评。
2.教材第32页“练习五”第1~2题。
学生独立完成,集体订正。
3.教材第32页“练习五”第3~5题。
学生独立完成,再组织交流:列出了哪几道算式?列出的乘法算式与加法算式有什么联系?
本节课学习了哪些内容?通过学习你有哪些收获?还有哪些疑问?
1.课前对学生的估计过高,可能没关注到全局。这也提醒我,备课不仅要备教材、备教案,更重要的还是要备好学生,这是上好一堂课的关键。
2.对学生的多样思维应加大评价力度。评价一个学生,要适时、适当,决不能敷衍,更不能抹杀,否则可能会压制学生的思维积极性。这一点,在今后的教学中,我还有待加强。
3.在课后巩固的作业设计中,我本着“精”的原则,尽量根据学生的学习反馈去设计一些题目,做到精讲精练。既学会知识,又能熟练运用。
第2课时求一个数的几分之几是多少
教材第29~30页例2及相关练习。
1.使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。
2.通过操作、观察,培养学生的推理能力,发展学生的思维。
一个数乘分数的意义以及计算方法。
课件。
师:同学们,上节课我们学习了分数与整数相乘的计算方法,在学新课之前我们先来复习一下上节课的内容。
复习:计算下面各题,并说出计算方法。
×2 ×1 ×5
师:上面各题都是分数与整数相乘,说一说分数与整数相乘的意义以及计算方法。
指名回答,教师补充。
师:今天,我们来学习“求一个数的几分之几是多少”的计算方法。
教学例2。
课件出示教材第29页例2花朵图,然后出示条件:
小星做了10朵绸花,其中是红花,是绿花。
引导学生理解:“其中”是什么意思?
使学生明白是10朵中的,然后出示问题。
(1)红花有多少朵?
引导学生看图理解:求红花有多少朵,就是求10朵的是多少朵。
师:怎么列式计算呢?(让学生应用已有的知识经验解决。)
生:10÷2=5(朵)。
师:为什么可以用上面的算式计算?
生:10朵的是红花,把10朵花平均分成2份,其中的一份是红花。
在此基础上指出:求10朵的是多少,可以用乘法计算。
教师说明要求,学生列式解答。
(2)绿花有多少朵?
可以先让学生在图中涂一涂,借助涂的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。
生:10÷5×2=4(朵)。
在此基础上指出:求10朵的是多少,可以用10×来计算。
师:求10朵的是多少,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。
(3)引导学生进行比较。
师:通过对上述两个问题的计算,你明白了什么?
引导小结:求一个数的几分之几是多少,可以用乘法计算。
1.教材第30页“练一练”第1题。
先让学生根据题意涂色,然后列式解答。
2.教材第30页“练一练”第2题。
通过填空,使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。
3.教材第32页“练习五”第6~9题。
本节课学习了哪些内容?通过学习你有哪些收获?还有哪些疑问?
“求一个数的几分之几是多少”是本单元的教学重点,是在学习了分数与整数相乘的意义和计算方法的基础上进行教学的,同分数与整数相乘的意义不完全相同,需要加以拓展。计算方法上“求一个数的几分之几是多少”的计算方法推导过程比较复杂,学生较难理解。它也是今后学习分数除法的意义和计算方法以及分数乘、除法应用题的基础。在教学过程中,部分学生对“求一个数的几分之几是多少”的意义难以理解,可适当补充一些变式训练来帮助学生理解,以提高学生分析题意、理解数量关系的能力。
第3课时“求一个数的几分之几是多少”的简单实际问题
教材第31页例3及相关练习。
1.使学生结合具体情境,继续学习用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,丰富对用分数表示的数量关系的认识,拓展对分数乘法意义的理解。
2.使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
重点:分析“求一个数的几分之几是多少”的数量关系。
难点:用分数乘法解决相关的实际问题。
课件。
课件出示教材第31页例3中的条形图。
师:从图中你能知道什么?
引导学生用分数描述图中的数量关系。如:把黄花朵数看作单位“1”,红花是黄花的,绿花是黄花的(或);把红花朵数看作单位“1”,黄花是红花的,绿花是红花的等。
1.教学例3第(1)题。
出示题目:黄花有50朵,红花比黄花多,红花比黄花多多少朵?
引导学生看图思考:红花比黄花多的朵数是图中的哪个部分?它是哪种花朵数的?也就是多少朵的?
追问:50朵的是什么?
指出:“红花比黄花多”,是把黄花朵数看作单位“1”,红花比黄花多的朵数是50朵的。
指名列式,教师根据学生的回答板书:50×。
师:列式时你是怎样想的?
学生完成计算。
2.教学例3第(2)题。
出示题目:绿花比黄花少,绿花比黄花少多少朵?
学生尝试解答,指名板演。
追问:“绿花比黄花少”这个条件中,要把哪个数看作单位“1”?要求绿花比黄花少多少朵,就是求多少朵的?
引导学生思考:你认为理解用分数表示的数量关系时,关键是什么?
指出:理解用分数表示的数量关系时,关键是弄清这个分数是哪两个数量比较的结果,比较时把哪个数量看作单位“1”的。
1.教材第31页“练一练”。
学生独立完成。(对有困难的学生,提示可以先按要求画一画,再完成填空。)
2.教材第33页“练习五”第10题。
先说出每个分数的意义,再把数量关系补充完整。
3.教材第33页“练习五”第11~15题。
独立解答,交流思考过程,集体订正。
通过本节课的学习,你有什么收获?你在今天课堂上的表现怎么样?
这节课主要是让学生通过具体的情境进一步理解“求一个数的几分之几”可以用乘法计算。在以前没学分数乘法的时候,我们是先求出1份的量再乘相应的份数来解答“求一个数的几分之几是多少”的问题。从课堂反馈看,刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是把它看成份数去理解。但经过一系列的训练后大多数的学生在列式时已经很自然地把单位“1”的量与它的几分之几相乘。在今后的教学中应进一步培养学生的计算能力。
第4课时分数与分数相乘
教材第34~35页例4、例5及相关练习。
1.使学生知道分数与分数相乘的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2.使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
重点:分数与分数相乘的意义和计算方法。
难点:理解分数与分数相乘的算理。
课件、长方形纸。
1.计算下面各题。
4× 7× ×4 ×12
2.说说分数与整数相乘的计算方法。
小结:分数和整数相乘,用分数的分子与整数相乘的'积作分子,分母不变。能约分的先约分,再计算。
3.课件出示:×。
师:这道题与之前学习的分数乘法有什么不同?今天我们就一起来探究分数与分数相乘的计算方法。
1.教学例4。
课件出示教材第34页例4题、图。
师:画斜线的部分是的几分之几?又是这个大长方形的几分之几?
引导学生明确:左图中斜线部分占的,右图中斜线部分占的。
师:求的是多少,可以怎样列式?求的呢?
师:你能列算式并看图填写出书中的结果吗?
(打开教材第34页完成填空。)
师:根据填的结果想一想怎样计算分数与分数相乘?
生:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
2.教学例5。
课件出示教材第34页例5题、图。
师:×和×分别表示的几分之几?
师:你能用前面得出的结论计算这两道题吗?
学生试做,订正完后师问:你能用什么方法来验证你的计算结果呢?
师:请同学们在自己准备的长方形纸上先涂色表示,再画斜线表示的和的。看看操作的结果与你计算的结果是否一致。
学生动手操作,教师巡视,对有困难的学生进行指导。
3.归纳总结。
师:比较刚才计算的每个积的分子、分母与它的因数的分子、分母,你有什么发现?
归纳出分数与分数相乘的计算方法:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
4.完成教材第34页“试一试”第1题。
提醒学生注意:计算分数与分数相乘时,能约分的要先约分再计算。
通过交流,进一步明确分数与分数相乘的计算方法。
5.分数与分数相乘的计算方法的推广。
请同学们先完成“试一试”第2题的填空,提醒学生把整数看作分母是1的分数来计算。
讨论:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?
学生分组讨论。
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数与整数相乘。
(2)实际计算时,可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便。
(3)也可以把整数与分数直接进行约分后再计算,这样更简便。
1.教材第35页“练一练”。
引导学生直接用分数与分数相乘的方法进行计算。
2.教材第37页“练习六”第1题。
先在图中画一画,再列式计算。
3.教材第37页“练习六”第2~5题。
学生独立完成,集体评讲。
今天我们学习了什么?分数与分数相乘怎样计算?
本节课主要教学分数与分数相乘的计算方法。计算方法的理解和掌握是一个意义获得的过程,因此在教学过程中应充分引导学生在直观图的支持下,在分析比较、探讨交流的环境中逐步发现规律,在深层次的思考和讨论中完善方法、构建方法体系。通过学习,有些学生虽然掌握了分数与分数相乘的计算方法,但在实际操作中错误较多,约分的方法也不能掌握,在以后的教学中应让学生进一步理解分数乘法的意义,加强计算的训练,熟练掌握计算的方法。
第5课时分数连乘
教材第35~36页例6及相关练习。
1.学会计算分数的连乘,并掌握分数连乘的计算技巧。
2.培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。
重点:分数连乘的简便算法和计算时约分的简便方法。
难点:正确理解并掌握用分数连乘解决简单的实际问题的解题思路。
课件。
1.口算。
×6=×=10×=×=
2.师:请同学们说说分数乘法怎样计算?怎样约分计算比较简便?
师:同学们都掌握得不错,今天我们来学习分数连乘。
(板书课题:分数连乘。)
1.课件出示教材第35页例6,理解题意。
师:从题中你能得到哪些数学信息?
同桌互相交流。
2.画图分析。
教师先画一条线段,表示一班做绸花的朵数。
启发学生思考:怎样用线段表示二班做绸花的朵数?教师引导学生画一画。
师:你会用线段表示三班做的绸花朵数吗?
学生独立画一画。
3.列式计算。
(1)师:要求三班做了多少朵,要先算什么?
生:先算出二班做的朵数,再计算三班做的朵数。
(2)师:怎样列式呢?
学生独立列式,指名板演。
生:135×=120(朵) 120×=90(朵)
(3)分布算式可以列成综合算式135××。
师:这样的乘法算式你会算吗?
讨论计算过程。
师:有没有不同的算法?
比较不同算法。
师:这两种算法各是怎样算的?你认为哪种算法比较简便?
4.归纳方法。
师:今天学习的分数乘法和以前学习的分数乘法有什么不同?怎样计算比较简便?
1.教材第36页“练一练”。
先让学生独立计算,再全班订正,交流算法。
2.长方体的长是3米,宽是米,高是米,它的体积是多少立方米?
3.教材第37页“练习六”第6题。
学生独立完成后,集体订正。
4.教材第38页“练习六”第7~9题。
引导学生先分析题意,再列式计算。
这节课学习了什么内容?分数连乘怎样计算比较简便?
今天教学分数连乘,从例题看还是比较简单的,学生学习时比较轻松。
本节课我把教学重点放在引导学生画线段图上,通过引导学生认识并画出线段图,帮助学生理解条件中单位“1”的转换,分析清楚数量之间的关系。对于分数连乘的计算,有一些学生约分时不太熟练,感觉速度较慢。
在课后解决实际问题的练习中发现有个别学生是先把两个分数相乘进行计算的,这样的计算我觉得可以理解成是把间接的分数表示转化成直接的分数表示。总的来说,本节课的课堂教学不理想,希望通过多做题来补救。
第6课时练习课(分数乘法)
教材第38页第10~15题。
1.提高学生计算分数乘法的熟练程度,能够正确地计算分数乘法。
2.提高学生的计算能力和学好数学的信心。
重点:正确地进行分数乘法的计算。
难点:灵活运用分数乘法解决实际问题。
课件。
师:上节课我们学习了什么内容,我们应该注意什么?
生:知道分数连乘的简便算法和计算时约分的简便方法。
1.教材第38页“练习六”第10题。
引导学生复习单位间的进率后,学生独立完成,然后订正。
2.教材第38页“练习六”第11题。
学生独立计算,完成后观察每组数的结果有什么特点。
概括:一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
3.教材第38页“练习六”第12~14题。
独立完成后订正。
4.教材第39页“练习六”第15题。
引导学生分析题意,要求鱼缸里有水多少立方米,需要哪些条件。
你有哪些收获?还有什么不明白的地方?
本节课作为分数乘法的一个基础知识的巩固和提升。巩固的内容包括:分数乘法的意义、计算法则以及分数应用的相关知识。在整个教学过程中,我把自己的角色真正转变为学生学习的组织者、引导者与合作者。在习题中,我所选择的习题与生活紧密联系,使学生感受到数学就在身边,生活中处处存在着数学。不足之处:在教学中对学生评价的语言不够到位,没有起到激励的作用,因而课堂气氛不是特别活跃。
第7课时倒数的认识
教材第36页例7及相关练习。
1.认识倒数的概念,掌握求倒数的方法,能熟练地求一个数的倒数。
2.培养学生数学思考的能力。
重点:掌握求倒数的方法。
难点:能熟练地求一个数的倒数。
课件。
师:在我国的文字里,有很多有趣的汉字,现在让我们一起来找找看。(课件出示有趣的汉字:呆和杏、吴和吞……)
师:你们发现这些汉字的特点了吗?(引导学生发现:这些汉字上、下交换位置以后,就成了新的汉字。)
师:在数学中也有这样的现象,现在我们就一起来认识倒数。(板书课题。)
1.教学例7。
(1)课件出示教材第36页例7。
师:下面的几个分数中,哪两个数的乘积是1?
生:×=1,×=1,×=1。
(2)引出概念。
师:乘积是1的两个数互为倒数。例如,和互为倒数,也可以说是的倒数,是的倒数。
(3)师:你能举例说明还有哪些数互为倒数吗?
学生举例来说,教师及时评议。
追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
2.教学求一个数的倒数的方法。
师:观察上面倒数和原数的关系,想一想,一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
小组讨论,全班交流。
师:求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
师:5的倒数是几?1的倒数是几?
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
总结:除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
3.完成教材第36页“练一练”。
学生独立完成,指名回答。
指出:分子是1的分数,它的倒数就是分母;整数的倒数就是这个整数作分母,分子是1的分数。
1.教材第39页“练习六”第16题。
学生在书上填空后,集体订正。
2.教材第39页“练习六”第17题。
指名口头回答。
3.教材第39页“练习六”第18题。
学生在书上填空后,集体订正。
4.教材第39页“练习六”第19题。
重点引导学生讨论每一组数的规律。
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
本节课先让学生通过对几个分数的观察,找出结果是1的算式,再让学生举例,观察算式的特点,理解“互为”的意思,最后总结出倒数的意义。我发现像这样难度不是很大的内容更要体现学生的主体性,让学生通过观察、比较、归纳、总结出倒数的意义,使学生在参与整个学习过程后有真正的收获。特别是通过对比的形式激发学生的学习兴趣,学生发现了算式的特点,举例后进一步发现有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调“互为”,让学生根据已有的知识经验说说怎样解释,这对学生掌握概念是非常必要的。
第8课时整理与练习
教材第40~42页的内容。
1.使学生对本单元所学知识有清楚地认识。
2.使学生进一步认识分数乘法表示的意义,进一步掌握分数乘法的计算法则,能比较熟练地进行分数乘法的计算。
3.提高学生的总结能力,培养良好的学习习惯。
重点:对本单元所学知识有清楚的认识。
难点:比较熟练地进行分数乘法的计算。
课件。
师:本单元我们学习了哪些内容?
师:怎样计算分数乘法?
小组讨论,指名汇报。
师:怎样的两个数互为倒数?怎样求一个数的倒数?
师:举例说说你能用分数乘法解决哪些实际问题。
全班交流,指名回答。
1.教材第40页“练习与应用”第1题。
学生先涂色再计算,学生独立完成后,集体订正。
2.教材第40页“练习与应用”第2~3题。
学生独立完成后订正。
3.教材第40页“练习与应用”第4题。
引导学生思考:如何把高级单位化成低级单位?
学生独立解答,评讲时结合问题说说思考方法。
4.教材第40~41页“练习与应用”第5~8题。
学生独立列式解答,并说说思考的过程。
5.教材第41页“练习与应用”第12题。
(1)引导学生读懂题意,使学生明确:要求妈妈的身高,必须先求出小明的身高。
(2)学生独立列式计算,集体评议。
6.教材第42页“探索与实践”第14题。
学生自己探索规律,全班交流。
7.教材第42页“评价与反思”。
学生自我评价,小组内交流。
在这节课上,我们完成了哪些任务?你还有什么疑问吗?
本节课作为分数乘法基础知识的整理与练习,为了达到本节课预定的目标,我充分发挥学生的主体地位,注重整理与练习课的条理性和系统性。本节课主要是帮助学生进一步巩固对分数乘法意义的理解,掌握分数乘法的计算方法,感受分数乘法的实际应用价值,提高学生用分数乘法解决简单实际问题的能力。
分数乘法教案5
教学目标:
1、通过练习,进一步使学生理解分数乘法的意义,掌握分数乘法的计算法则,能够比较熟练地进行计算
2、使学生理解分数乘法应用题中的数量关系,回解答求一个数的几分之几是多少的应用题。
3、培养学生的合作意识,使他们养成主动参与的良好学习习惯。
教具准备:卡片、小黑板以及实物投影仪
课时安排:2课时
第一课时:
一、复习。说出下面算式表示的意义。
9×:它表示什么意义?并计算结果,板书。
×:它又可以表示什么意义?板书.
二、自主性练习,教师巡视指导,并指名部分学生到黑板上板演。
教学分数和整数相乘可以表示的意义。
友情提醒:注意分数约分法的使用,思考分数值大小的`比较.
学生分析。
三、课堂板演练习:
先指名分析:求这两种营养成分的多少,就是求什么?应该如何计算?请列出计算式子。之后由学生板演,其它学生互相解析。
对解这样的问题,你有什么体会与感想?如何防止解题中可能出现的错误?
尝试练习二:
学生分析
尝试练习三:
学生板演后在课堂上指名分析
四、课堂作业,教师巡视指导:P10第6、7两题。
五、课后练习:
作业本配套练习。
第二课时
一、反馈性练习:
1、计算下列各题:
×6×8×12×35
6×8×12×35×
2、说出下面各题的意义和得数。
×7×415×6×
如:×7,既可表示求7个的和是多少,也可以表示求7的是多少。
二、学生板演下题。
教学时,要灵活。要求学生说出数量关系式及思考过程。
三、课堂作业:
1、
2、
3、
教师巡视,针对个别差生辅导。
四、课堂小结,并布置作业。P12页,第12、13、14三题。
分数乘法教案6
教学目标:
能力目标:
能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的'良好兴趣。
教学重点、难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:师生共同归纳和推理
教学准备:教学参考书、教科书
教学过程:
一、复习导入:
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)
二、课堂练习:
学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?
学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体“1”之间的关系。
学生做第4题,让学生能够学会比较的和占整体“1”的大小。
学生做第5题,教师注意让学生整体的几分之几是多少?
学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。
学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。
四、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
是整个操场“1”的,是整个操场“1”的。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
分数乘法教案7
教学内容:教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。
教学目标:
1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
教学过程:
一、复习导入
林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?
独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。
如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。
二、教学例3
1、出示例3
林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?
(1)比较复习题与例3的不同。
问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”
(2)说说“今年的班级数比去年增加了”的含义。
是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上表示出今年班级的数量。
(4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。
板书:24+24,说说24的含义,独立解答。
(5)(5)想一想,还可以怎样计算?
板书:24(1+),说说(1+)的含义,独立解答。
(6)小结:怎样解答这类应用题?
三、巩固练习
1、做练一练的第1题。
先说一说可以怎样想,再独立解答。
2、做练习十六的第5题。
独立完成,可以先画图思考,再列式解答。
比较两题的解法有什么联系和区别。
3、做练习十六的第8题。
让学生先画线段图表示两题中的.已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。
比较两题的解法有什么联系和区别。
4、做练习十六的第9题。
先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。
比较两题的解法有什么联系和区别。
四、全课小结,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
做练习十六的第6、7题。
分数乘法教案8
教材分析
“分数乘法的意义”是学习和理解本节课内容的重要根底,因此在教学新学问前帮忙学生找到学问的生长点很重要。
本节课的内容为简洁的分数乘法一步应用题,把握这局部学问才能为学习后面局部较简单的分数乘法问题打下根底。
学情分析
本节课的内容是在学生已经把握了分数乘法的计算方法和分数乘法的意义,具备了肯定的分析题意中已知条件和找单位“1”等迁移学问的力量。学生认知的障碍点主要是理解分数问题中的单位“1”和问题的关系。
教学目标
1.理解把握“求一个数的几分之几是多少”的'分数问题的构造和解题方法。
2.渗透对应思想,进展学生分析推理力量和解决实际问题力量。
3.感受数学学问应用的广泛性。
教学重点和难点
1. 理解分数问题中的单位“1”和问题的关系。
2.理解“求一个数的几分之几是多少”的问题的解题思路和方法。
3.抓住学问关键,正确、敏捷推断单位“1”。
教学过程
一、复习导入。
1.读信息,找出单位“1”:
2.列式计算。
思索:这两道题为什么用乘法计算?
板书课题
二、探究新知。
1.教学例1
(1)读题,理解题意。知道题中已知条件和所求问题,搞清晰
数量间的关系。
(2)画线段图分析思索,分析重点句。
(3)在分析题意的根底上,学生尝试解答。
板书: 2500× =1000(㎡)
(4)结合计算结果,让学生说说自己的想法,培育学生分析数据的力量,进展国情教育。
三、稳固练习。
1.让学生理解题意,解决问题并说出解决的依据是什么。
2.(1)解决的问题是什么?怎样解决?
(2)比拟这两道题的异同。
3.要求学生画线段图分析题意,再独立列式解答。
四、拓展提高。
先让学生独立思索,尝试列式解答,再沟通想法。
小结:解决这类问题应从哪里入手分析?解题步骤是什么?
五、归纳总结。
今日有什么收获?
六、布置作业。
教科书第18页第2、3、9题。
分数乘法教案9
教学目标
1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。
2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。
3.培养学生分析、解决问题的能力,以及知识迁移的能力。
4.培养学生良好的审题习惯。
教学重点和难点
1.会分析数量关系,掌握解题思路,正确解答。
2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。
教学过程
导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)
(一)复习铺垫
1.说图意填空。(投影)
问:谁是单位1?
2.说图意回答问题。(投影)
问:①谁和谁比,谁是单位1?
3.准备题:
(做在练习本上,画图列式计算,一个学生到黑板板演。)
教师订正讲评。
提问:①谁是单位1?
③要求用去多少吨就是求什么?
少。)
④根据什么用乘法计算?
(根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)
师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)
(二)学习新课
1.学习例4。
(1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)
(2)分析数量关系。(同桌互相说。)
提问:单位1变了吗?单位1是谁?
请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。
学生汇报结果,让学生说解题思路,老师一边把图补充完整。
=2500-1500
=1000(吨)
答:还剩1000吨。
生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。
师追问:求用去多少吨你是怎么想的?
答:还剩1000吨。
生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求
(3)引导学生比较:这两种解法在思路上有什么相同点和不同点?
相同点:两种解法都是经过两步计算。
不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。
第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。
(4)练习做一做(1):
昆虫标本有多少件?
(做完让学生说解题思路、投影订正。)
2.学习例5。
六月份捕鱼多少吨?
(1)读题找出条件、问题。
(2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)
问:①谁和谁比,谁是单位1?
(3)列式解答。
师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。
学生汇报结果。(老师板书列式)
答:六月份捕鱼3000吨。
师追问:你是怎么想的?
生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。
师再追问:怎样求六月份比五月份多捕的吨数?
捕的吨数。
答:六月份捕鱼3000吨。
师追问:怎么想的?
生:把五月份的.吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。
师问:这两种解法有什么联系和区别?
(联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)
(4)练习做一做(2)。
答。
(三)巩固练习
1.补充问题并列式解答。(复合投影片)
________?
2.选择正确答案的序号填在( )里。
包?列式是
[ ]
[ ]
A.乙队修了多少米?
B.乙队比甲队多修多少米?
C.甲队比乙队多修多少米?
D.乙队比甲队少修多少米?
(3)根据条件和问题列出算式。
已知一袋大米重40千克。
(四)课堂总结
今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?
(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)
课堂教学设计说明
(1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。
(2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
(3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。
分数乘法教案10
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的`?
预设: 生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为。
提出质疑:3个相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法
1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?
预设: 生1:按照加法计算=(个)。 生2:(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题 师:说出你的思考过程。
2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”
2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)
五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了,用去了多少吨?
(2)一堆煤有吨,5堆这样的煤有多少吨?
3.拓展练习
1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
分数乘法教案11
一、教学目标。
1、使学生理解分数乘整数的意义与整数乘法意义相同。
2、使学生掌握分数乘整数的计算方法,能正确进行计算,明白计算过程中能约分的要先约分的道理。
二、教学重点。
使学生理解分数乘整数的意义及计算方法。
三、教学难点。
总结分数乘整数的计算方法,理解分数乘整数算式的意义。
四、教学过程。
(一)设疑激趣,提出问题
1、把
9+9+9+9+9改成乘法算式。
2、把+++改成乘法算式。
3、(
1)口答整数乘法的意义。
(2)求几个相同加数和的.简便运算。
4、列式计算。
(1)5个12是多少?
12×5=
(2)12个是多少?
×12=
(3)3个是多少?
5、提出问题。
教师:求3个是多少,能不能用算式×3来表示呢?今天,我们就一起来学习分数乘法。
板书课题:分数乘法(一)。
(二)引导探索,解决问题。
1、分数与整数相乘的意义。
(1)出示题目。
1个占1张彩纸的,3个占这张彩纸的几分之几?
(2)探索交流。
①用图示表示。
1个图案占这张彩纸的。3个图案占这张彩张的。
②用加法计算。
③用乘法计算。
(3)引导发现。
教师:求几个相同的分数和,可以用乘法计算。分数与整数相乘的意义与整数乘法的意义相同。
2、分数与整数相乘的计算方法。
(1)涂一涂,算一算。呈现题目。
(2)引导观察算式和结果。教师:在中,你是怎么算出得数的?算式中的数字与得数的数字有什么关联?让学生认真观察算式数字,思考其中的关联,并和同学交流,说一说自己有什么发现。在这一基础上,师生共同探索其中的联系。
(3)总结计算方法。让学生用自己的语言表述分数与整数相乘的计算方法。
(4)试一试。
3、约分。
教师:再计算时你有什么体会?让学生回答问题,同学之间进行交流,通过算式比较。最后,使全班学生明白:
(1)在计算过程中,能约分的要先约分。
(2)最后结果应该是最简分数。
(三)巩固练习完成课文第3页“练一练”。
1、第
1题。
完成后要将算式得数和涂的结果进行比较,并说明计算中的要点。
2、第
2题。利用教材提供的素材,教育学生节约用水。
3、第
3题。
(1)让学生独立完成。
(2)同学之间互相交流、校对,发现问题,及时反馈。
(3)说一说计算的步骤、方法:
①分子与整数相乘作分子,分母不变。
②能约分的要先约分,再计算。
4、第
4题。
(1)学生独立完成。
(2)说一说,你是如何解决问题的。爸爸和小红一天分别吃多少→爸爸和小红一天共吃多少→爸爸和小红3天共吃多少。
5、第
5题。让学生都算出结果,再观察各组题目的算式及结果,然后说一说有什么发现。
(四)作业选用课时作业。
分数乘法教案12
教学内容:
教材第7-9页“分数乘法”(三)
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的`方法;
3.培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/5 4/5×2
3.顺势导入新课:分数乘法(三)
二、扶放结合探究新知
1.画图引导学生理解1/2*1/2的算例。
2.出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书设计:
分数乘法(三)
意义:求一个数的几分之几是多少?
计算法则:分子乘分子作分子,分母乘分母作分母。
分数乘法教案13
教学目标:
1、使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。
2、通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。
3、在探究活动中激发学生学习数学的兴趣。
教学重点:分数乘整数的意义和计算法则。
教学难点:为了计算简便,能约分的要先约分,然后再相乘。
教学过程:
一、复习导入
1、填空。
(1)8+8+8=()()
(2)54=()+()+()+()
(3)5个12是多少?列式为()
乘法的意义是什么?
2、计算。
二、引导探索,展示反馈
1、揭示课题。
今天开始我们学习分数乘法。首先学习分数乘整数。
2、分数乘整数的'意义。
(1)出示P8例1。
(2)表示什么意义?
(3)的分数单位是多少?有几个这样的分数单位?
(4)人走3步的距离是袋鼠跳一下的几分之几?就是求什么?
(5)3个相加的和是多少?怎样列式?
(6)++,这3个加数有什么特点?还可以怎样列式比较简便?
(7)3表示什么意思?
(8)把3和125的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的意义相同。
3、分数乘整数的计算法则。
(1)用加法算:
(2)用乘法算:
(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
4、教学例2:6
学生试做,强调为了计算简便,能约分的要先约分,然后再乘。
5、尝试练习:P9做一做第1题。
三、巩固深化,拓展思维
1、P9做一做第2、3题。
2、小结:这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?
3、课堂练习:P12练习二第1、2、4题。
4、课外补充,拓展延伸
(1)、一种稻谷每千克能出大米千克,100千克稻谷能出大米多少千克?
(2)、甲、乙两袋橘子,如果从甲袋中拿出千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?
分数乘法教案14
教学目标
1.通过学生对生活情景的理解,生活信息的提取、加工,培养学生观察和提取信息的能力。
2.会画线段图分析分数乘法两步问题的数量关系。
3.通过学生灵活选择乘法运算定律解决实际生活问题的操作,培养学生完整的数学思维和清晰的表达能力。
教学重点难点
1.分析分数乘法两步问题的数量关系。
2.抓住知识关键,正确、灵活判断单位“1”。
课前准备:课件
课时安排:2课时
教学过程
第一课时
一、复习旧知,导入新课
课件出示,学生回答。
1.下面各题分别把什么看作单位“1”的量?谁是几分之几相对应的量?
(1)一块布做衣服用去3÷5。
(2)一条公路,已修了4÷7。
(3)小明有一些零花钱,用去一部分后,还剩下3÷4。
(4)水结成冰,体积膨胀1÷11。
2.口头列式
(1)32的3÷8是多少?
(2)120页的1÷6是多少?
3、揭示课题
上节课我们学习了简单的分数问题,今天我们继续研究稍复杂的分数乘法问题。
二、自主探究 掌握新知
1.世界文化遗产秦兵马俑被称为“世界第八大奇迹”。目前已发现3个兵马俑。
2.课件出示兵马俑资料
(1)1号坑内有6000尊陶俑、陶马,已清理出它的1÷6。
(2)1号坑面积最大,比2号坑大5÷9,2号坑占地面积约9000平方米。
(3)2号坑内的陶俑、陶马数比1好少3÷4。
(4)3号坑最小,内有陶俑66尊。
3.让学生认真阅读资料并思考:你们能提出什么问题?
结论1:1号坑还剩下多少尊陶俑、陶马没有处理?
生2:1号坑占地面积约有多少平方米?
生3: 2号坑有多少尊陶俑、陶马?
……
4.同学们的提问都很好,现在我们先来解决生1的`问题。课件出示:1号坑还剩下多少尊陶俑、陶马没有处理?
5.学生选择有关的信息分析数量关系,为了帮助理解,我们可以借助画线段图的方式。
6.引导学生画线段图。
怎样用线段图表示已知条件和问题呢?师和学生一起边画图。(图略)
7.借助线段图分析数量关系,列式解答。(师巡视)
8.汇报展示,交流评价。
结论1:先求出清理出多少尊,再用总尊数—已清理出的尊数=剩下的尊数。
6000—6000×1÷6
=6000—1000
=5000(尊)
生2:先求出未清理的尊数占总尊数的几分之几。
6000×(1—1÷6)
=6000×5÷6
=5000(尊)
要求汇报时,让学生说出图中各部分表示什么,哪些是已知的,哪些是要求的,哪一个单位是表示单位“1”的量。
刚才我们一起解决了生1的问题,现在我们再来解决生2的问题。
1.课件出示:1号坑占地面积约多少平方米?
2.让学生根据有关信息,自己画线段图,教师给予适当的提示。(图略)
3.师生检查线段图画的对不对。
4.尝试借助线段图分析数量关系,并列式解答。
强调:谁是单位“1”?
5.汇报展示,交流评价。
结论1:先求1号坑比2号坑大多少平方米,再用2号坑的面积+大出的面积=1号坑的面积。
9000+9000×5÷9
=9000+5000
=14000(平方米)
生2:先求1号坑占地是2号坑的几倍。
9000×(1+5÷9)
=9000×14÷9
=14000(平方米)
6.对比两种解法,你更喜欢哪种解法?为什么?
同学们,我们现在已经解决了两个问题,你们学会了吗?下面,你们能自己解决问题了吗?
课件出示:2号坑有多少尊陶俑、陶马?
说明:要求学生认真审题,画好线段图,分析数量、列式解答,师生订正。
(1)6000-6000×3÷4 (2)6000×(1-3÷4)
=6000-4500 =6000×1÷4
=1500(尊) =1500(尊)
二、全课总结
今天我们学习了什么内容?解决稍复杂的分数问题,为了使数量关系更加清楚,我们可以借助什么方法?解决问题要注意方法多样性,有时可以选择更加简便的方法。
三、巩固练习
教材第81页第1题,填一填。
学生独立完成,师生订正。
板书设计
两步分数乘法问题和简便运算
1.1号坑还剩多少尊陶俑、陶马没有清理?
6000-6000×1÷6 6000×(1-1÷6)
=6000-1000 =6000×1÷6
=5000(尊) =5000(尊)
2.1号坑占地约多少平方米?
9000+9000×5÷9 9000×(1+5÷9)
=9000+5000 =9000×14÷9
=14000(平方米) =14000(平方米)
分数乘法教案15
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的.特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
【分数乘法教案】相关文章:
分数乘法教案10-07
分数乘法说课稿01-17
《分数乘法》说课稿02-10
分数的乘法说课稿02-08
分数的乘法 05-25
分数乘法 07-11
《分数乘法》 04-11
分数乘法一 11-30
分数乘法 [必备]07-08
分数乘法说课稿15篇06-12