首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>分数乘法教案

分数乘法教案

时间:2024-05-18 11:13:32 教案 我要投稿

分数乘法教案范例(15篇)

  作为一名优秀的教育工作者,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。我们该怎么去写教案呢?下面是小编为大家收集的分数乘法教案,仅供参考,希望能够帮助到大家。

分数乘法教案范例(15篇)

分数乘法教案1

  教学内容:

  练习一

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的'良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)

  二、课堂练习

  学生做第8题,让学生明白商场打折的意思,分别求出一个整数的几分之几是多少?如: =?

  学生做第9题,注意让学生用分数乘以整数的知识求出梨、苹果、香蕉各占水果总数的多少?

  学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。

  学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。

  学生做第12题,教师注意让学生观察统计图表,求出20xx年比20xx年增加多少元?

  学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。

  学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  练习二

  15 10(米) 15-10=5(米)

分数乘法教案2

  教学目标

  1、知识与技能

  掌握分数乘以分数的计算方法以及结果与原分数的比较规律。

  2、过程与方法

  通过实践探究分数与分数相乘的计算方法, 再通过观察比较算式得出规律。

  3、情感态度和价值观

  拓宽了生活实用性,进一步提高了对生活中实际问题的解决能力。

  教学重难点

  掌握分数乘以分数的计算方法以及结果与原分数的比较规律。

  教学过程

  一、知识回顾

  二、新课引入

  1、计算

  (1)我国古代著名哲学著作《庄子·天下》 中有这样一段话:“一尺之棰,日取其半,万世不竭。”意思是说,一尺长的木棍,每天截一半,永远也截不完。

  (2)3/4x1/4=? 用一张长方形的纸折一折,想一想,再算一算。

  2、两个分数相乘的计算方法是什么?

  3、一个数与分数相乘,积一定小于这个数吗?举例说明你的想法。

  5/76/77/78/79/7

  x14/3

  70/2184/2198/21=14/3112/21126/21

  说一说你的发现。

  4、总结归纳

  两个分数相乘,分子乘以分子,分母乘以分母,能约分的可以先约分。

  一个数如果乘一个小于1的分数,积一定小于这个数。

  一个数如果乘一个等于1的.分数,积一定等于这 个数。

  一个数如果乘一个大于1的分数,积一定大于这个数。

  5、练习

  三、例与练

  例1:淘气过生日,妈妈买来一个蛋糕,切了1/3给淘气,淘气只吃了其中的1/2,淘气吃了蛋糕的几分之几?

  答:淘气吃了蛋糕的1/6。

  四、课堂小结

  五、拓宽延伸

  一个西瓜,八戒吃1/3,悟空吃剩下部分的1/2,八戒和悟空谁吃得多?

  答:八戒和悟空吃的一样多。

分数乘法教案3

  教学目标:

  1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、培养学生分析能力,发展学生思维。

  教学重点:

  理解题中的单位1和问题的关系。

  教学难点:

  抓住知识关键,正确、灵活判断单位1。

  教具准备:

  多媒体课件。

  教学过程:

  一、复习引入(激发兴趣,引入铺垫)

  1、列式计算。

  (1)20的 是多少?

  (2)6的 是多少?

  二、自主探究(自主学习,探讨问题)

  1、教学例1。

  出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示100千克白菜。

  吃了 ,吃了谁的' ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图

  (3)分析数量关系,启发解题思路。

  A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?

  B.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?

  (4)列式计算。

  A.学生完整叙述解题思路。

  B.学生列式计算,教师板书: (千克)

  C.写出答话,教师板书:答:吃了80千克。

  (5)总结思路。

  根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。

  (6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?

  2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

  三、拓展总结(应用拓展,盘点收获)

  1、判断下面每组中的两个量,应该把谁看作单位1。

  (1)乙是甲的 ,甲是乙的 。

  (2)甲是乙的 ,乙是甲的 倍。

  2、练习四1、2题,完成在练习本上,然后订正。

  3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。

分数乘法教案4

  教学内容:

  分数乘法(一)

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算整数乘以分数

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变)并注意更正学生的错误和表扬回答问题的.同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3 =,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  (学生1:3 = = ;学生2:3 = = = = )

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习

  做课本2页涂一涂,算一算,2个 的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)

分数乘法教案5

  教学目标:

  1、知识与技能:结合具体情境,进一步探索并理解分数乘整数的意义,并能正确计算。

  2、数学思考与问题就解决:借助类比迁移和数形结合的思想方法,进一步探索并掌握分数乘整数的计算方法。

  3、情感态度:能解决简单的分数乘整数的`实际问题,体会数字与生活的密切联系。

  教学重点:

  掌握求一个数的几分之几是多少的分数应用题的特点和解题方法。

  教学难点:

  进一步探索并理解分数乘整数的意义。

  一、创设情境,引出新知。

  1、数字信息

  奇思有6块饼,笑笑吃的饼个数是奇思的1/2,淘气吃的饼个数是奇思的2/3。

  2、提出问题,并解决。

  (1)笑笑有多少块饼

  (采取四人小组合作交流,最后由小组长汇报讨论结果,奖励讨论结果最好的小组)

  根据学生回答,

  板书:6×1/2=3(块)

  把6块饼看成一个整体,得到6块饼的1/2是3块饼。

  (2)淘气有多少块饼板书:6×2/3=4(块)

  求一个数的几分之几用乘法。

  学生观察、读题、理解题意,根据题中信息,提高数字问题。

分数乘法教案6

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少? 9个11是多少? 8个6是多少?

  (2)计算:

  1/6+2/6 +3/6 = 3/10+3/10 +3/10 =

  2.引出课题。

  ++这题我们还可以怎么计算?今天我们就来学习分数乘法。

  二、新授

  1、 利用3/10 +3/10 +3/10 教学分数乘法。

  (1) 这道加法算式中,加数各是多少?(都是)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)

  (3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10

  2、 出示例1,画出线段图,学生独立列式解答。

  (1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )

  3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、 练习:练习完成做一做第2题。

  5、 教学例2

  (1)出示 6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  三、练习

  1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  四、作业

  练习二第1、2、4题。

  (2)一个数乘分数

  教学目标:

  1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

  2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点:推导算理,总结法则。

  教学过程:

  一、导入

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

  二、新课

  1、教学例3

  (1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:

  (2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?

  (3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。

  (4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

  2、相关练习:练习二第5题。

  3、小结一个数乘分数的意义和计算方法。

  (1)意义:一个数乘分数,表示求这个数的几分之几是多少。

  (2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

  4、教学例4

  (1)引导学生分析题意,根据速度时间=路程的数量关系列出算式。

  (2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。

  (3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。

  5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。

  三、练习

  1、练习三第6题

  (1)求2枝长多少分米,就是求2个 是多少?算式: 2

  (2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。

  2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

  四、作业

  练习二第3、7、8、10题。

  (3)分数混合运算和简便运算

  教学目标:

  1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。

  教学重点:

  理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。

  教学过程:

  一、复习

  1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

  2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

  3、观察下面各题,先说说运算顺序,再进行计算。

  (1)362+15 (2)56+73 (3)15(34-27)

  二、新授

  1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

  (1) +(2)- (3)-(4)+

  2、复习整数乘法的运算定律

  (1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  (2)这些运算定律有什么用处?你能举例说明吗?

  (3)用简便方法计算:2574 0.36101

  3、推导运算定律是否适用于分数。

  (1)鼓励学生大胆猜测并勇于发表自己的个人意见。

  (2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

  (3)各四人小组汇报讨论和计算结果。

  4、教学例6

  (1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)

  (2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)

  (3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

  三、练习

  P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

  (4)练习课

  教学目标:

  1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。

  教学难点:熟练掌握运算定律,准确、合理地进行简便计算。

  教学过程:

  一 、复习

  1、复习分数混合运算的.运算顺序。

  2、复习乘法的简便运算定律

  乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  二、巩固练习

  1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

  2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

  3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

  4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

  5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

  6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

  三、布置作业

  完成相关的练习册。

  (5)分数乘法整理与复习

  教学目的:

  1.分数乘法的计算方法

  2.分数乘加、乘减混合运算

  3.熟练掌握运算定律,并运用运算定律进行简便计算。

  教学重点:

  1.分数乘法的计算方法

  教学难点:

  运算定律进行简便计算

  教学过程:

  一、复习分数乘法的计算方法

  30 ===

  60 ===

  12 ==

  二、复习分数乘加、乘减混合运算。

  + 1- (1- )

  7+ 120(+)

  三、复习分数的运算定律并进行简便计算。

  +12- - 48+48 24( - )

  四、相关文字题复习

  1、4的与的4倍的和是多少? 2、 的 比它的 多多少?

  五、相关的解决问题。

  1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?

  2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?

  3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?

  六、拓展练习。

分数乘法教案7

  分数乘法一步应用题

  教学目标:

  1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

  教学重点:理解题中的单位“1”和问题的关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教学过程:

  一、复习

  1、先说下列各算式表示的意义,再口算出得数。

  12× ×

  2、列式计算。

  (1)20的 是多少? (2)6的 是多少?

  3、学生得出:求一个数的几分之几用乘法。

  二、新授

  1、教学例1

  (1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。

  (2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

  (3)在分析题意的基础上,学生独立列式、计算。

  2500× =1000(平方米)

  2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

  三、练习

  1、练习四第2题:让学生先找出分率句中隐藏的'单位“1”——全世界的丹顶鹤数20xx只。

  2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。

  四、总结

  解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

分数乘法教案8

  第一单元

  分数乘法

  第五课时

  小数乘分数

  教学内容:

  教材第8页例5,做一做,练习二1~4。

  教学目标:

  1、在解决问题的过程中学习并掌握小数乘分数的计算方法。

  2、经历小数乘分数的计算方法的探究过程。

  3、体会算法多样化的数学思想,提高计算能力。

  教学重点:

  掌握小数乘分数的计算方法。

  教学难点:

  灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

  教学过程:

  一、复习导入。

  1、计算

  交流时让学生说一说计算方法和计算过程中的约分方法。

  2、把下面的小数化成分数,分数化成小数。

  1.2()

  0.4()

  3.5()

  1.25()

  让学生说一说怎样将一个小数化成分数?

  二、探索新知

  1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。

  (1)提取题中的已知条件和所求问题

  已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。

  所求问题:松鼠欢欢的尾巴有多长?

  (2)确定单位1,根据松鼠的尾巴长度约占身体长度的34可知,应把松鼠欢欢的.身体长看作单位1,单位1已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.134

  启发观察,这个算式和我们前面学习的分数乘法有什么不同?

  (3)探讨小数乘分数的计算方法。

  提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。

  学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。

  小数化成分数: = = (分米)

  分数化成小数: =2.10.75=1.575(分米)

  3、解决问题二。

  (1)出示问题:松鼠乐乐的尾巴有多长?

  (2)学生独立解答。

  组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。

  学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?

  当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书

  小数和分母约分: (分米)

  4、观察比较,回顾思考。

  提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)

  三、巩固练习。

  1、教材第8页做一做。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。

  2、教材第10页练习二第2题。

  3、教材第10页练习二第3题。

分数乘法教案9

  教学目标

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的.魅力,领略到美。

  教学重难点

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:引导学生总结分数乘整数的计算法则。

  教学过程

  一、复习

  出示复习题。

  1.根据题意列出算式:

  5个12是多少?

  3个14是多少?

  2.下列句子中那些可以看做单位1

  猎豹的速度是狮子的七分之三。

  参加合唱队的同学占全班人数的五分之一。

  红花比黄花多二分之一。

  十月比九月节约四分之三。

  3.计算:3/10 +3/ 10 + 3/10 =

  3/10 + 3/10+ 3/10这题我们还可以怎么计算?

  今天我们就来学习分数乘法。

  二、新授

  1、利用3/10 + 3/10 + 3/10教学分数乘法。

  (1)这道加法算式中,加数各是多少?(都是3/10)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

  (3) 3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,

  所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?谁能把它补充完整

  2、出示例1,

  (1)理解题意:

  引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

  (2)引导学生根据线段图理解,

  “人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

  跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?

  (列式:2/11×3 = 6/11 )

  有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

  3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、练习:练习完成“做一做”第2题。

  5、教学例2

  (1)出示3/8×6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。 (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

  6.练一练,课件出示,学生独立计算。然后订正。

  三、巩固练习

  比赛:

  第一回合

  1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  第二回合

  2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  四、课堂总结:

  今天你有什么收获?

  五、布置作业:练习二第1、2、4题。

分数乘法教案10

  教学目标:

  1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。

  2、会用线段图分析分数乘法一步应用题的数量关系。

  3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。

  教学重点:

  经历“求一个数的几分之几是多少”的问题的数量关系分析过程。

  教学难点

  掌握“求一个数的几分之几是多少“的解答方法。

  教学方法与手段:

  小黑板、多媒体

  教具准备

  主题图、小组练习纸

  教学过程:

  <一>、创设情境,生成问题

  师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,20xx年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5.我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)

  师:这是用分数乘法的.知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的学习,揭示并板书课题:

  <二>、探索交流,解决问题

  ①、从题目里你知道了哪些信息?需要解决的问题又是什么?

  ②、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。

  师出示课本的线段图。

  ③、你会表示我国人均耕地面积吗?(生动手画图指名板演)

  ④、给大家说说你是怎样表示的?

  ⑤、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)

  (师出示)“求2500的2/5是多少?“

  ⑥、你们会算吗?动手试试。(指名板演): 2500x2/5=1000(平方米)

  为什么要这样算?还有其它方法吗?(预设:2500÷5×2)

  ⑦、通过计算知道了20xx年我国人均耕地面积是1000平方米,你知道我国人均耕地面积减少的原因→←是什么?

  结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  <三>、巩固应用,内化提高。

  1、一头鲸长28米,一个人的身高是鲸体长的2/35 。这个人的身高多少米?

  ①、找出单位“1”,谁能解决,动手试试

  ②、列式解决,讲评。

  2、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数20xx只。

  3、练习四第3题:让学生先找到单位“1”,再独立列式解答。

  <四>、回顾整理,反思提升

  师:这节课你们一定有不少的收获吧,谁能说说?

  板书设计:

  求2500的2/5是多少?2500x2/5=1000(平方米)

   :

  本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

分数乘法教案11

  教学目标:

  1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

  2、培养学生认真审题,独立思考的学习习惯。

  3、训练学生分析、解题问题的能力。

  教学过程:

  一、书上第44页上的第12题

  1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

  从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

  2、书上第44页上的第13题

  引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

  二、说说分数的意义,并把数量关系补充完整

  (1)今年的产量比去年增产1/8。

  ×1/8=

  (2)钢笔枝数的2/5相当于圆珠笔的'枝数。

  ×2/5=

  (3)花布的米数比白布长1/4。

  ×1/4=

  (4)实际每月比计划节约了1/10。

  ×1/10=

  (引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

  二、对比练习。

  1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?

  2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

  3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

  (1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?

  (2)比较3题有何异相点?

  三、综合练习。

  1、一种商品原价是250元,现价是原价的4/5,现价是多少?

  2、一种商品原价是250元,后来降价了1/5,降价多少?

  3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

  (1)两天分别修了多少米?

  (2)第二天比第一天多修多少米?

  (3)还剩多少米没修?

  四、作业

  课前思考:

  潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。

  第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。

  课前思考:

  上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。

  课后反思:

  由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

  第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

  课后反思:

  通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。

  课后反思:

  今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。

  从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。

分数乘法教案12

  教学目标:

  1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算法则。

  教学难点:

  分数乘整数的'计算方法以及算法的优化。

  教学方法:

  自主合作探究。

  教具准备:

  多媒体

  教学过程:

  一、复习引入

  1.同学们,我们已经学会了分数的加法和减法,下面口算。

  2.今天我们来学习分数乘法。板书

  谁能编一道分数乘法算式(择几道板书黑板一侧)

  分数乘法有很多,今天先研究其中一种:分数乘整数。

  看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

  二、探究

  1.理解意义。

  出示例题1:做一朵绸花用 米绸带。

  (1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

  课件: + + =(米)

  (2)小华做7朵这样的绸花,一共用了几分之几米绸带?

  课件: + + + + + + =(米)

  (3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

  + + + + + + + + + + + + + + =?

  这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

  导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

  板书: ×3= 7×= ×15=

  谁能说说 ×3表示什么意思?7×呢?

  前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

  2.探究算法。

  现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

  ×3= =

  ×3=++=

  ……

  交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

  练习:×7,与原来加法结果比较,完全正确。

  谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

  继续研究:×30

  提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

  指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

  讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

  练习:先判断可不可以约分?怎样约分?

  总结注意事项:能约分的先约分再乘。

  三、练习

  填一填:练习第一、二题。

  算一算:完成3第三、七题。

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  练习八第2题、第4题。

分数乘法教案13

  教学内容

  教科书第9~11页的例5、例6,练习三的第9题。

  教学目的

  1、使学生知道整数乘法的运算定律对分数乘法同样适用。

  2、使学生能够运用所学的运算定律进行一些简便运算。

  3、使学生知道在运算时应用了哪些运算定律,以培养学生的思维能力。

  教学过程

  一、复习

  指名说一说在整数乘法中学过哪些运算定律(乘法交换律、乘法结合律、乘法分配律)。学生说出字母表达式或用语言叙述都可以。对说出字母表达式的学生,最好让他们再说一说每个运算定律是什么意思。然后用课件结合具体例子进行说明。

  二、新课

  1、整数乘法运算定律推广到分数乘法。

  出示下面三组算式,让学生说一说每组算式的左右两边有什么样的关系。

  × ○ ×

  ( × )× ○14×( × )

  ( + )× ○ × + ×

  先让学生观察每组中的'两个算式有什么特点。然后算出左右两边的得数,看看每组的两个算式有什么样的关系,并分别做出结论。如,根据 × = × ,可以做出“整数乘法的交换律对于分数乘法也适用”的结论。

  最后做出“整数乘法的交换律、结合律和分配律,对于分数乘法同样适用”的结论。

  让学生用字母表示每一个运算定律,教师板书:

  a×b=b×a

  (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c

  教师:“这三个等式中的字母可以表示什么数?”(整数、小数、分数。)

  2、教学例5、例6(运用乘法运算定律使分数乘法计算简便)。

  教师:“我们已经知道应用乘法运算定律可以使一些整数、小数的乘法计算简便,在分数乘法中应用运算定律也可以使一些计算简便。”

  (1)课件展示教学

  例5。 × ×5

  =×5×(应用了什么运算定律?)

  =

  出示例5,让学生仔细观察,题里的已知数有什么特点。( 和5可以约分,所以可以先乘。)

  然后,教师问:“这种简便方法是应用了乘法的什么运算定律?”(乘法交换律和乘法结合律。)

分数乘法教案14

  教学内容:教科书第20页例2。

  教学目标:

  1、加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。

  2、发展学生分析推理能力和解决实际问题的能力。

  教学过程

  播放公路上往来不断的车辆及噪杂的声音。

  师:噪音对人的健康有害,绿化造林可以降低噪音。

  出示画面(如教材第20页情境图)请学生说说对图意的理解。

  师:从图中我们知道了公路上车辆的声音是80分贝,经过绿化带的隔离,噪音降低了1/8。根据这些条件,你能提出什么问题?

  学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)

  师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。

  生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,噪音降低了多少?

  出示线段图

  请学生把条件与问题在线段上表示出来(如下图)。

  提问:把谁看作单位“1”?然后让学生独立解答。

  师:现在我们解决第二个问题。谁能把问题完整地叙述出来?

  生:公路上测得声音为80分贝,经过绿化带的隔离,噪音降低了1/8,现在听到的声音是多少分贝?

  师:线段图上哪一段表示“现在听到的声音有多少分贝”?

  把线段图补充完整。

  小组讨论探讨解决方法。

  汇报交流方法。

  第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。

  列式80-80×(1/8)=70(分贝)

  第二种方法:先求出现在听到的'分贝数是原来分贝数的几分之几?再求出现在听到的声音有多少分贝?

  列式

  提问:1-1/8表示什么?在线段图上表示出来。

  师:比较这两种方法有什么不同?

  学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的几分之几。但是第一种方法是根据已知条件先求出80分贝的1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。

分数乘法教案15

  教学目标

  1.通过学生对生活情景的理解,生活信息的提取、加工,培养学生观察和提取信息的能力。

  2.会画线段图分析分数乘法两步问题的数量关系。

  3.通过学生灵活选择乘法运算定律解决实际生活问题的操作,培养学生完整的数学思维和清晰的表达能力。

  教学重点难点

  1.分析分数乘法两步问题的数量关系。

  2.抓住知识关键,正确、灵活判断单位“1”。

  课前准备:课件

  课时安排:2课时

  教学过程

  第一课时

  一、复习旧知,导入新课

  课件出示,学生回答。

  1.下面各题分别把什么看作单位“1”的量?谁是几分之几相对应的量?

  (1)一块布做衣服用去3÷5。

  (2)一条公路,已修了4÷7。

  (3)小明有一些零花钱,用去一部分后,还剩下3÷4。

  (4)水结成冰,体积膨胀1÷11。

  2.口头列式

  (1)32的3÷8是多少?

  (2)120页的1÷6是多少?

  3、揭示课题

  上节课我们学习了简单的分数问题,今天我们继续研究稍复杂的分数乘法问题。

  二、自主探究 掌握新知

  1.世界文化遗产秦兵马俑被称为“世界第八大奇迹”。目前已发现3个兵马俑。

  2.课件出示兵马俑资料

  (1)1号坑内有6000尊陶俑、陶马,已清理出它的1÷6。

  (2)1号坑面积最大,比2号坑大5÷9,2号坑占地面积约9000平方米。

  (3)2号坑内的陶俑、陶马数比1好少3÷4。

  (4)3号坑最小,内有陶俑66尊。

  3.让学生认真阅读资料并思考:你们能提出什么问题?

  结论1:1号坑还剩下多少尊陶俑、陶马没有处理?

  生2:1号坑占地面积约有多少平方米?

  生3: 2号坑有多少尊陶俑、陶马?

  ……

  4.同学们的提问都很好,现在我们先来解决生1的问题。课件出示:1号坑还剩下多少尊陶俑、陶马没有处理?

  5.学生选择有关的信息分析数量关系,为了帮助理解,我们可以借助画线段图的`方式。

  6.引导学生画线段图。

  怎样用线段图表示已知条件和问题呢?师和学生一起边画图。(图略)

  7.借助线段图分析数量关系,列式解答。(师巡视)

  8.汇报展示,交流评价。

  结论1:先求出清理出多少尊,再用总尊数—已清理出的尊数=剩下的尊数。

  6000—6000×1÷6

  =6000—1000

  =5000(尊)

  生2:先求出未清理的尊数占总尊数的几分之几。

  6000×(1—1÷6)

  =6000×5÷6

  =5000(尊)

  要求汇报时,让学生说出图中各部分表示什么,哪些是已知的,哪些是要求的,哪一个单位是表示单位“1”的量。

  刚才我们一起解决了生1的问题,现在我们再来解决生2的问题。

  1.课件出示:1号坑占地面积约多少平方米?

  2.让学生根据有关信息,自己画线段图,教师给予适当的提示。(图略)

  3.师生检查线段图画的对不对。

  4.尝试借助线段图分析数量关系,并列式解答。

  强调:谁是单位“1”?

  5.汇报展示,交流评价。

  结论1:先求1号坑比2号坑大多少平方米,再用2号坑的面积+大出的面积=1号坑的面积。

  9000+9000×5÷9

  =9000+5000

  =14000(平方米)

  生2:先求1号坑占地是2号坑的几倍。

  9000×(1+5÷9)

  =9000×14÷9

  =14000(平方米)

  6.对比两种解法,你更喜欢哪种解法?为什么?

  同学们,我们现在已经解决了两个问题,你们学会了吗?下面,你们能自己解决问题了吗?

  课件出示:2号坑有多少尊陶俑、陶马?

  说明:要求学生认真审题,画好线段图,分析数量、列式解答,师生订正。

  (1)6000-6000×3÷4 (2)6000×(1-3÷4)

  =6000-4500 =6000×1÷4

  =1500(尊) =1500(尊)

  二、全课总结

  今天我们学习了什么内容?解决稍复杂的分数问题,为了使数量关系更加清楚,我们可以借助什么方法?解决问题要注意方法多样性,有时可以选择更加简便的方法。

  三、巩固练习

  教材第81页第1题,填一填。

  学生独立完成,师生订正。

  板书设计

  两步分数乘法问题和简便运算

  1.1号坑还剩多少尊陶俑、陶马没有清理?

  6000-6000×1÷6 6000×(1-1÷6)

  =6000-1000 =6000×1÷6

  =5000(尊) =5000(尊)

  2.1号坑占地约多少平方米?

  9000+9000×5÷9 9000×(1+5÷9)

  =9000+5000 =9000×14÷9

  =14000(平方米) =14000(平方米)

【分数乘法教案】相关文章:

分数乘法教案10-07

分数乘法教案(精选)05-18

分数乘法教案【经典15篇】05-18

[荐]分数乘法教案15篇05-18

分数乘法说课稿01-17

分数的乘法说课稿02-08

《分数乘法》说课稿02-10

分数乘法 07-11

《分数乘法》 04-11

Baidu
map