八年级数学下册教案(荐)
作为一名优秀的教育工作者,时常需要编写教案,借助教案可以更好地组织教学活动。教案要怎么写呢?下面是小编收集整理的八年级数学下册教案,仅供参考,欢迎大家阅读。
八年级数学下册教案1
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法(图2)
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的'面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
八年级数学下册教案2
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的.能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
八年级数学下册教案3
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
①与的最简公分母是; ②与的最简公分母是;
③与最简公分母是;④与的`最简公分母是.
★★如何确定最简公分母?一般是取各分母的所有因式的次幂的积
三、合作交流,解决问题:
1、通分:⑴与⑵,
2、通分:⑴与; ★⑵,.
四、课堂测控:
1、分式和的最简公分母是.分式和的最简公分母是.
2、化简:
3、分式,,,中已为最简分式的有( )
A、1个B、2个C、3个D、4个
4、化简分式的结果为( )
A、 B、 C、 D、
5、若分式的分子、分母中的x与y同时扩大2倍,则分式的值( )
A、扩大2倍B、缩小2倍C、不变D、是原来的2倍
6、不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( )
A、10 B、9 C、45 D、90
7、不改变分式的值,使分子、分母次项的系数为整数,正确的是( )
A、 B、 C、 D、
8、通分:
⑴与⑵与
八年级数学下册教案4
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通
1 / 5
过作等腰三角形底边的`高来证明“等边对等角”.
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
2 / 5
22A'B'
从而肯定了第一位同学通过作底边的高证明两个三角形
全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题
(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
3 / 5
BEADCDA'D'BB'
八年级数学下册教案5
一、教学内容
1、教学内容分析:二次根式是在数的开方的基础上展开的,是算术平方根的抽象与扩展,同时又为勾股定理和解一元二次方程打下基础.
2、学生情况分析:本节课是二次根式的第一课时,是在学生学方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓.
二、教学设计理念
根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式.
三、教学目标
1、知识与技能:
(1)了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围;
(2)理解二次根式的非负性.
2、过程与方法:通过对学、群学等方式培养学生分析、概括等能力.
情感态度与价值观:培养学生认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神、合作精神,激发学生学习数学的兴趣.
四、教学重点、难点
1、教学重点:了解二次根式的概念,二次根式有意义的条件,并会求二次根式中所含字母的取值范围
2、教学难点:理解二次根式的双重非负性
五、教学方法、手段
1、教学方法:探究法、讨论法、发现法
2、教学手段:课件(ppt)
六、教学过程
(一)创设情境,导入新课
问题1 你能用带有根号的的式子填空吗?
(1)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系,如果用含有h 的式子表示 t ,则t= _____.
(2)下球体过球心的横截面面积为S,则横截面圆形的半径r为 .
(3)面积为3 的正方形的边长为_____,面积为S 的正方形的边长为_____.
【师生互动】:学生独立思考,用算术平方根表示结果,教师适当引导和评价.
【设计意图】:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
探究新知,讲授新课
1.抽象概括,形成概念
问题2 上面所得的代数式:,它们的共同特点是什么?
【师生互动】:学生独立思考并积极发言,教师归纳总结.
【设计意图】:通过归纳总结引出二次根式的概念.
问题3 根据以前所学知识,理解二次根式的定义,并且要注意什么.
【师生互动】:学生小组讨论并且小组长做好记录,老师归纳总结.
【设计意图】:加深对二次根式的'理解.
2.辨析概念,应用巩固
问题4 (辩一辩) 判断给出式子是不是二次根式:①;
②;③;④;⑤;⑥
【师生互动】:学生独立思考并积极发言,并对于他们的答案做出正确地评价,给予必要的鼓励.
【设计意图】:该题是利用抢答来调动课堂气氛,理解二次根式的定义.
问题5 根据要求编写二次根式:
(1)请写出一个你喜欢的二次根式;
请写出一个被开方数含x的二次根式.;
请你写出一个被开方数含x,且当x为任何实数的二次根式.
【师生互动】:学生独立思考并积极发言,其他同学来检验是否编写正确.
【设计意图】:设计开放性题开拓学生思维,进一步加深对二次根式的理解.
灵活运用,巩固提高
问题6 当x是怎样的实数时,下列各式在实数范围内有意义:
【师生互动】:
(1)学生口答,老师板书规范解题格式,(2)(3)学生演板.学生完成之后小组讨论结果的正确性,同时对演板的同学做出评价,老师再适时补充,(2)(3)评价增加一道变式,让学生能灵活运用知识.最后再归纳这类式子有意义要注意:
(1)二次根式的被开方数为非负数;
(2)分母中含有字母时,要保证分母不为0.
【设计意图】:本题强化学生对二次根式被开方数为非负数的理解,同时考查学生的灵活运用的能力,训练学生的思维.
发散思维,拓展延伸
问题7 已知实数x,y满足,求:
(1)x的取值范围;
(2)以x,y的值为两边长的等腰三角形的周长.
【师生互动】:学生先独立思考,再小组合作,将答案写在白板上,并请小组两位成员上台展示,其他同学提出质疑,补充,老师适当引导点评.
【设计意图】:本题第一问进一步加深学生对二次根式被开方数为非负数的理解;第二问渗透分类思想,通过小组合作,上台展示体现学生为主体,发挥学生的能动性.
问题8 (走进中考)已知,则 p(x,y)是第 象限.
【师生互动】:学生先独立思考讲解思路,老师适当点评.
【设计意图】:本题主要考察
课堂小结,盘点收获
一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.
【师生互动】:学生举手发言,老师点评并鼓励.
【设计意图】:学生总结,互相取长补短,再一次突出本节课的学习重点,帮助学生把握知识要点,理清知识脉络,体会数学中的分类思想.
作业设计,巩固提高
必做题:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(写序号)
代数式有意义,则字母x的取值范围是 .
3.代数式的值为0,则a= .
选做题:1.已知,则的值为 .
2.若式子 有意义,则P(a,b)在第 象限.
小组合作题:
1.已知m,n满足 ,求:(1)m,n的值.
(2)将m,n的值 代入并化简:
(3)请选一个你喜欢的x的值代入求值.
【设计意图】:气氛通过分层作业,教师能及时了解学生对本节知识的掌握情况.必做题和选做题如果上课有时间打算用砸金蛋的形式调动课堂.
(六)板书设计
16.1.1 二次根式 定义:形如 的式子叫做 二次根式 注:(双重非负性) (老师板书) (学生演板)
八年级数学下册教案6
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的`两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学下册教案7
教学目标:
1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。
教学难点:验根的方法。分式方程增根产生的原因。
教学准备:小黑板。
教学过程:
复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?
(1);(2);(3);(4);
(5);(6);(7);(8)。
讲授新课:
1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。
2.讨论分式方程的'解法:
(1)复习解方程时,怎样去分母?
(2)讲解例1:解方程(按课文讲解)
归纳:解分式方程的基本思想:
分式方程整式方程
(3)讲解例2:解方程(按课文讲解)
归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。
想一想:产生增根的原因是什么?
巩固练习:P1451t,2t。
课堂小结:什么叫做分式方程?
解分式方程时,为什么要检验?怎样检验?
布置作业:见作业本。
八年级数学下册教案8
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的`能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
八年级数学下册教案9
教学目标
(一)教学知识点
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的`重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
●教学重点
1.分式的概念及其基本性质.
2.分式的运算法则.
3.分式方程的概念及其解法.
4.分式方程的应用.
●教学难点
1.分式的运算及分式方程的解法.
2.分式方程的应用.
●教学方法
讨论——交流法
讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.
●教具准备
投影片两张,实物投影仪
第一张:问题串,(记作§3.5A)
第二张:例题分析,(记作§3.5B)
●教学过程
Ⅰ.提出问题,回顾本章的知识.
出示投影片(§3.5A)
问题串:
1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.
2.分式的性质及有关运算法则与分数有什么异同?
3.如何解分式方程?它与解一元一次方程有何联系与区别?
[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.
(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)
[生]实际生活中的一些量可以用分式表示,例如(用实物投影)
某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?
[生]我们组来回答此问题,此人晨练时平均每分钟行米.
我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.
[生]应为m.
[师]同学们举的例子都很有特色,谁还能举.
[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?
[生]原价为元.……
[师]都是分式.分式有什么特点?和整式有何区别?
[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.
[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)
某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?
解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得
八年级数学下册教案10
学习目标
1、能说出约分的意义和步骤。
2、能说出最简分式的意义。
3、能说出分式的乘、除和乘方法则,并能用式子表示。
4、能熟练地进行分式的乘除和乘方运算。
5、会归纳总结整数指数幂的运算性质。
6、能熟练地运用幂的运算性质进行计算。
主体知识归纳
1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。
3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。
4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。
7、整数指数幂的运算性质可归纳如下
(1)am·an=am+n(m、n都是整数);
(2)(am)n=amn(m、n都是整数);
(3)(ab)n=anbn(n是整数)、
基础知识精讲
1、正确理解分式约分的意义
(1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。
(2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。
2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:
(1)若分子、分母都是几个因式乘积的`形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、
(2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、
3、进行分式的乘除运算时,应注意以下几点:
(1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、
(2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。
(3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。
(4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。
八年级数学下册教案11
例题讲解
引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,
1、你有哪些乘车方案?
2、只租8辆车,能否一次把客人都运送走?
问题2;怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量(单位:人/辆)4530
租金(单位:元/辆)400280
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。
分析;
(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。
设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即
y=400x+280(6-x)
化简为:y=120x+1680
讨论:
根据问题中的.条件,自变量x的取值应有几种可能?
为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一:
4两甲种客车,2两乙种客车
y1=120×4+1680=2160
方案二:
5两甲种客车,1辆乙种客车
八年级数学下册教案12
教学准备
教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.
学生准备:复习平行四边形性质;学具:课本“探究”内容.
学法解析
1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.
2.知识线索:
3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.
教学过程
一、回顾交流,逆向思索
教师提问:
1.平行四边形定义是什么?如何表示?
2.平行四边形性质是什么?如何概括?
学生活动:思考后举手回答:
回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)
回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).
教师归纳:(投影显示)
平行四边形【活动方略】
教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.
学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:
(1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的'形状都是平行四边形;
(2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.
(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册教案13
一、创设情境
在学习与生活中,经常要研究一些数量关系,先看下面的问题.
问题1如图是某地一天内的气温变化图.
看图回答:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃.最低气温是-4℃;
(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?
二、探究归纳
问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:
观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.
解随着存期x的增长,相应的年利率y也随着增长.
问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
观察上表回答:
(1)波长l和频率f数值之间有什么关系?
(2)波长l越大,频率f就________.
解(1)l与f的乘积是一个定值,即
lf=300000,
或者说.
(2)波长l越大,频率f就 越小 .
问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的'面积则S与r之间满足下列关系:S=_________.
利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:
由此可以看出,圆的半径越大,它的面积就_________.
解S=πr2.
圆的半径越大,它的面积就越大.
在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值
八年级数学下册教案14
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、观察下列算式:
⑴ ⑵
请写出分数的乘除法法则:
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
2、分式的.乘除法法则:(类似于分数乘除法法则)
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
3、分式乘方:即分式乘方,是把分子、分母分别乘方.
三、合作交流,解决问题:
1、计算:
⑴ ; ⑵
2、计算:
⑴ ; ⑵ .
4、计算:⑴ ⑵
四、课堂测控:
1、计算:
八年级数学下册教案15
一、回顾交流,合作学习
【活动方略】
活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.
【问题探究1】(投影显示)
飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?
思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)
【活动方略】
教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.
学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.
【问题探究2】(投影显示)
一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?
思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的'逆定理予以解决:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.
【活动方略】
教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.
学生活动:思考后,完成“问题探究2”,小结方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD为直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此这个零件符合要求.
【问题探究3】
甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)
【活动方略】
教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.
学生活动:课堂练习,与同伴交流或举手争取上台演示
【八年级数学下册教案】相关文章:
八年级数学下册教案05-19
八年级数学下册教案(优选)05-19
八年级下册数学 01-07
数学八年级下册 03-14
八年级数学下册 04-24
人教版八年级英语下册教案01-13
八年级数学下册 09-26
《社戏》八年级下册语文教案09-21
数学八年级下册 6篇05-13
八年级下册数学 03-13