首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>一次函数教案

一次函数教案

时间:2024-07-07 12:25:40 教案 我要投稿

一次函数教案15篇[精华]

  作为一位优秀的人民教师,通常需要用到教案来辅助教学,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编整理的一次函数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

一次函数教案15篇[精华]

一次函数教案1

  学习目标:

  1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;

  2、能熟练应用平行线的`性质公理及定理。

  一、试一试

  自学指导:平行线性质公理:两直线平行,同位角相等

  1、 思考下列各题,你能利用平行线性质公理解决它们吗?

  2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。

  (1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2

  由此得平行线性质定理1:

  (2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°

  由此得平行线性质定理2:

  二、练一练

  1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b

  (1)求证:a∥c

  (2)请将(1)题证得的结论用一句话总结出来

  2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。

  四、记一记

  1、两直线平行的性质公理及两个性质定理;

  2、平行线的性质补充结论

  (1)垂直于两平行线之一的直线必垂直于另一条直线

  (2)夹在两平行线之间的平行线段相等;

  (3)两条平行线间的距离处处相等;

  (4)经过直线外一点,有且只有一条直线和已知直线平行;

  (5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补

  B组:请在补充结论中选择你感兴趣的进行证明:

一次函数教案2

  关键词:高中数学“学案导学”

  一、学案的编写

  1.编写的原则

  学案是导学的载体,有什么样的学案就有什么样的课堂导学。理清教与学之间的关系,实现教为主导、学为主体的原则,努力给学生提供更多的自学、自问、自做、自练的方法和机会,要针对不同的对象编写不同的学案,确保把学生放在主体地位。使学生真正成为学习的主人,增强对学习的兴趣。

  编写学案的主要目的就是培养学生自主探究学习的能力。因此,学案的编写要有利于学生进行探索学习,从而激活学生的思维,让学生在问题的显现和解决过程中体验到成功的喜悦。

  教学目标应体现教师对教育本质和目的的正确理解。好的教学目标是一种全新的知识观,这种新的知识观不是现成的真理和结论,而应是让学生去发现真理和获得结论的过程,使学生在发现真理和获得结论的过程中培养创造力。学案的编写应该服从学生身心发展的特点和实际需要,充分考虑和适应不同层次学生的实际能力和知识水平,使学案具有较大的弹性和适应性。

  2.学案的内容

  学案内容必须能使学生建立牢固的基本知识和基本技能。内容的编写要紧扣教学目标,符合学生的认识层次,不能是知识点的单一重复。编写学案时,要强调内容创新,以培养学生的创新思维能力。应当采用启发式,使学生“跳跳摘桃子”,在获取知识的`过程中能发现各种知识之间的联系,受到启发,触发联想,产生迁移和连结,形成新的观点和理论,达到认识上的飞跃。制定的目标,既要切实可行,又要使学生感到跳一下能摸得着。知识构成可以分成基本线索和基础知识两部分。线索是对一节课内容的高度概括,编写时,它一般以填空的形式出现,让学生在预习的过程中去完成。基础知识是学案的核心部分,主要包括知识结构框架、基本知识点、教师的点拨和设疑、印证的材料等。

  学案要清楚完整地反映一节课所要求掌握的知识点以及应培养的能力。学案上,要给学生留出记笔记和做小结的地方,以便学生写自己的心得、体会和疑问,以利于学生的自我调节和提高。

  二、学案教学的操作

  教师在讲课的前一天把学案发给学生,让学生在课下预习。通过预习,使学生明确学习的目标、要学的内容、教师的授课意图、教师要提的问题、自己不懂的地方以及听课的重点等。学生带着问题上课,可大大提高听课的效率。学生在学习的过程中,教师进行适当的引导,不仅能使学生不断的体验成功,维持持久的学习动力,而且学生在教师的引导下,也能缩短获取知识的时间,提高学习效率,从而培养探索问题的能力。在教学时,教师参照教案,按照学案授课。学生在教师指导下按照学案进行学与练。

  三、学案范例

  函数的零点学案

  【预习要点及要求】

  1.理解函数零点的概念。

  2.会判定二次函数零点的个数。

  3.会求函数的零点。

  4.掌握函数零点的性质。

  5.能结合二次函数图象判断一元二次方程式根存在性及根的个数。

  6.理解函数零点与方程式根的关系。

  7.会用零点性质解决实际问题。

  【知识再现】

  1.如何判一元二次方程式实根个数?

  2.二次函数顶点坐标,对称轴分别是什么?

  【概念探究】

  阅读课本完成下列问题

  1.已知函数,=0,>0。

  叫做函数的零点。

  2.请你写出零点的定义。

  3.如何求函数的零点?

  4.函数的零点与图像什么关系?

  【例题解析】

  1.阅读课本完成例题。

  例:求函数的零点,并画出它的图象。

  2.由上例函数值大于0,小于0,等于0时自变量取值范围分别是什么?

  3.请思考求函数零点对作函数简图有什么作用?

  【总结点拨】

  对概念理解及对例题的解释

  1.不是所有函数都有零点

  2.二次函数零点个数的判定转化为二次方程实根的个数的判定。

  3.函数零点有变量零点和不变量零点。

  4.求三次函数零点,关键是正确的因式分解,作图像可先由零点分析出函数值的正负变化情况,再适当取点作出图像。

  【例题讲解】

  例1.函数仅有一个零点,求实数的取值范围。

  例2.函数零点所在大致区间是()

  A.(0,1)B.(1,2)C.(2,3)D.(3,4)

  例3.关于的二次方程,若方程式有两根,其中一根在区间内,另一根在(1,2)内,求的范围。

  【当堂练习】

  1.下列函数中在[1,2]上有零点的是()

  A. B.

  C. D.

  2.若方程在(0,1)内恰有一个实根,则的取值范围是()

  A. B. C. D.

  3.函数,若,则在上零点的个数为()

  A.至多有一个B.有一个或两个C.有且只有一个D.一个也没有

  4.已知函数是R上的奇函数,其零点,……,则= 。

  5.一次函数在[0,1]无零点,则取值范围为。

  6.函数有两个零点,且都大于2,求的取值范围。

  四、实施学案导学应注意的事项

  1.注意显性目标和隐性目标:①知识目标和能力目标是写在学案上的,属显性目标,主要通过学生自学完成;②情感目标和意志目标是隐性目标,不能写在学案上,要靠教师适时调控,在融洽的师生关系中激发兴趣,培养学生的意志等。

一次函数教案3

  一、读一读

  学习目标:

  1、熟练证明的基本步骤和书写格式;

  2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

  二、试一试

  自学指导:平行线判定公理: 同位角相等,两直线平行

  1、自学教材P229-231,学完后合上课本完成下列各题:

  (1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b

  由此得,平行线判定定理1: ;

  (2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的'判定定理证明a∥b

  由此得,平行线判定定理2: .

  三、练一练

  1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决

  2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°

  求证:a∥b 你有几种证明方法?请选择其中两种方法来证明

  四、记一记:

  证明命题的一般步骤:

  (1)根据题意画出图形(若已给出图形,则可省略)

  (2)根据题设和结论,结合图形,写出已知和求证;

  (3)经过分析,找出已知退出求证的途径,写出证明过程;

  (4)检查证明过程是否正确完善。

一次函数教案4

  教学目标

  1、经历一般规律的探索过程,发展学生的抽象思维能力。

  2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

  教学重点

  1、一次函数、正比例函数的概念及两者之间的关系。

  2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

  课件教学过程

  一、创设问题情境,引入新课

  1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

  2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

  3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

  二、新课学习

  1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

  2、一次函数、正比例函数的概念学习讨论:刚才写出的.两个关系式y=3+0.5x、y=100—0.18x在形式上有什么相同之处?

  让学生分析出他们的共同点:

  ①左边都是因变量,右边都是含自变量的代数式;

  ②自变量X与因变量Y的次数都是1;

  ③从形式上看,形式都为y=kx+b,K,b为常数。

  问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

  问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

  并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

  3、例题学习

  例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

  例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

  三、随堂练习

  1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

  A、y= +x B、y=—0。8x C、y=0。3+2x2 D、y=6—

  2、已知函数y=(m+1)x+(m2—1),当m,y是x的一次函数;当m,y是x的正比例函数。

  四、拓展应用

  学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:

  (1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x—500,y乙=180x)

  (2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20—500=3500(元);y乙=180×20=3600(元);

  y甲< y乙,所以到甲旅行社合算。)

  (3)在什么情况下,选择乙旅行社?(依题意得,y甲— y乙>0,即(200x—500)—180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)

  五、课堂小结

  让学生归纳本节课学习内容:

  1、一次函数、正比例函数概念以及它们之间的关系。

  2、会根据已知信息写出一次函数的关系式。

  六、作业读一读:

  中国古代漏刻必做题:161页习题6.2第1、2、3题选

  做题:161页试一试

一次函数教案5

  教学目标:

  1、掌握一次函数解析式的特点及意义

  2、知道一次函数与正比例函数的关系

  3、理解一次函数图象特点与解析式的联系规律

  教学重点:

  1、 一次函数解析式特点

  2、 一次函数图象特征与解析式的联系规律

  教学难点:

  1、一次函数与正比例函数关系

  2、根据已知信息写出一次函数的表达式。

  教学过程:

  Ⅰ.提出问题,创设情境

  问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

  分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

  s=570-95t.

  说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

  问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

  分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

  问题3 以上问题1和问题2表示的这两个函数有什么共同点?

  Ⅱ.导入新课

  上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

  y是x的正比例函数。

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

  (1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

  (2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

  (3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

  (4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

  (5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

  (6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

  (7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

  (2)L=2b+16,L是b的一次函数.

  (3)y=150-5x,y是x的一次函数.

  (4)s=40t,s既是t的一次函数又是正比例函数.

  (5)y=60x,y是x的一次函数,也是x的正比例函数;

  (6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

  (7)y=50+2x,y是x的一次函数,但不是x的正比例函数

  例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

  分析 根据一次函数和正比例函数的定义,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

  例4 已知y与x-3成正比例,当x=4时,y=3.

  (1)写出y与x之间的函数关系式;

  (2)y与x之间是什么函数关系;

  (3)求x=2.5时,y的值.

  解 (1)因为 y与x-3成正比例,所以y=k(x-3).

  又因为x=4时,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函数.

  (3)当x=2.5时,y=3×2.5=7.5.

  1. 2

  例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

  (1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

  (2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

  分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

  (2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的'储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

  分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

  解 在第一阶段:y=3x(0≤x≤8);

  在第二阶段:y=16+x(8≤x≤16);

  在第三阶段:y=-2x+88(24≤x≤44).

  Ⅲ.随堂练习

  根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

  2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

  超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

  Ⅳ.课时小结

  1、一次函数、正比例函数的概念及关系。

  2、能根据已知简单信息,写出一次函数的表达式。

  Ⅴ.课后作业

  1、已知y-3与x成正比例,且x=2时,y=7

  (1)写出y与x之间的函数关系.

  (2)y与x之间是什么函数关系.

  (3)计算y=-4时x的值.

  2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

  3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

  4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

  5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

一次函数教案6

  知识要点

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,

  相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。

  2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.

  3、正比例函数y=kx的性质

  (1)、正比例函数y=kx的图象都经过

  原点(0,0),(1,k)两点的一条直线;

  (2)、当k0时,图象都经过一、三象限;

  当k0时,图象都经过二、四象限

  (3)、当k0时,y随x的增大而增大;

  当k0时,y随x的增大而减小。

  4、一次函数y=kx+b的性质

  (1)、经过特殊点:与x轴的交点坐标是 ,

  与y轴的交点坐标是 .

  (2)、当k0时,y随x的增大而增大

  当k0时,y随x的增大而减小

  (3)、k值相同,图象是互相平行

  (4)、b值相同,图象相交于同一点(0,b)

  (5)、影响图象的两个因素是k和b

  ①k的正负决定直线的方向

  ②b的正负决定y轴交点在原点上方或下方

  5.五种类型一次函数解析式的确定

  确定一次函数的解析式,是一次函数学习的重要内容。

  (1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式

  例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

  解:把点(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函数的解析式为:y=3x-12

  (2)、根据直线经过两个点的坐标,确定函数的解析式

  例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),

  求函数的表达式。

  解:把点A(3,4)、点B(2,7)代入y=kx+b,得

  ,解得:

  函数的解析式为:y=-3x+13

  (3)、根据函数的图像,确定函数的解析式

  例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x

  (小时)之间的关系.求油箱里所剩油y(升)与行驶时间x

  (小时)之间的函数关系式,并且确定自变量x的取值范围。

  (4)、根据平移规律,确定函数的解析式

  例4、如图2,将直线 向上平移1个单位,得到一个一次

  函数的图像,那么这个一次函数的解析式是 .

  解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位

  后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,

  得 ,解得: ,函数的解析式为:y=2x+1

  (5)、根据直线的对称性,确定函数的解析式

  例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。

  例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。

  例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。

  经典训练:

  训练1:

  1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。

  (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?

  (2)若y是x的函数,试写出y与x之间的函数关系式 。

  训练2:

  1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函数有___ __;正比例函数有____________(填序号).

  2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )

  A.k1 B.k-1 C.k1 D.k为任意实数.

  3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.

  训练3:

  1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.

  2. 一次函数y=mx+n的图象如图,则下面正确的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.

  4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;

  若y随x的增大而增大,则k__________.

  5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  训练4:

  1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。

  4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  5、已知y-1与x成正比例,且 x=-2时,y=-4.

  (1)求出y与x之间的函数关系式;

  (2)当x=3时,求y的值.

  一、填空题(每题2分,共26分)

  1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .

  2、若直线 和直线 的交点坐标为 ,则 .

  3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .

  4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .

  5、函数 ,如果 ,那么 的取值范围是 .

  6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.

  7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .

  8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的'三角形的面积为 ,则 .

  9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .

  10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .

  11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.

  12、 为 时,直线 与直线 的交点在 轴上.

  13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .

  二、选择题(每题3分,共36分)

  14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )

  15、若直线 与 的交点在 轴上,那么 等于( )

  A.4 B.-4 C. D.

  16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )

  17、直线 如图5,则下列条件正确的是( )

  18、直线 经过点 , ,则必有( )

  A.

  19、如果 , ,则直线 不通过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是

  A. B. C. D.都不对

  21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )

  图6

  22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )

  A.4 B.5 C.6 D.7

  23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )

  A.1个 B.2个 C.3个 D.4个

  24、已知 ,那么 的图象一定不经过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )

  三、解答题(1~6题每题8分,7题10分,共58分)

  26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.

  27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?

  28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

  (1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.

  (2)在同一坐标系中,画出这三个函数的图象.

  29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

  (1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.

  (2)小王家第一季度交纳电费情况如下:

  月份 一月份 二月份 三月份 合计

  交费金额 76元 63元 45元6角 184元6角

  问小王家第一季度共用电多少度?

  30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.

  (1)求 与 之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]

  31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?

  32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)

  路程/千米 运费(元/吨、千米)

  甲库 乙库 甲库 乙库

  A地 20 15 12 12

  B地 25 20 10 8

  (1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).

  (2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?

一次函数教案7

  一、内容和内容解析;

  1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像

  2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

  二、目标和目标解析

  1、教学目标的确定

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

  知识目标

  (1)能用两点法画出一次函数的图象。

  (2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

  能力目标

  (1)通过操作、观察,培养学生动手和归纳的'能力。

  (2)结合具体情境向学生渗透数形结合的数学思想。

  情感目标

  (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

  2、教学重点、难点

  用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

  三、教学问题诊断分析

  1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

  2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

  3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  四、教学支持条件分析

  恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  五、教学过程设计

  (一)、设疑,导入新课(2分钟)

  通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题)

一次函数教案8

  教学过程设计

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:我们来看下面两个问题有什么关系?

  1.解不等式5x+6>3x+10.

  2.当自变量x为何值时函数y=2x—4的值大于0?

  教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.

  由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,?求自变量相应的取值范围.

  问题2:作出函数y=2x—5的图象,观察图象回答下列问题:

  (1)x取何值时,2x—5=0?

  (2)x取哪些值时,2x—5>0?

  (3)x取哪些值时,2x—5<0?

  (4)x取哪些值时,2x—5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

  象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题3:用画函数图象的.方法解不等式5x+4<2x+10

  设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,?自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.

  学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:

  方法一:原不等式可以化为3x—6<0,画出直线y=3x—6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x—6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4?上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,?所以不等式的解集为:x<2.

  以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这

  种函数观点认识问题的方法,对于继续学习数学很重要.

  三、巩固练习

  1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.

  2.利用图象解出x:

  6x—4<3x+2.

  [解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

  方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

  (2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的函数值都小于2.所以自变量x的取值范围是x<—2.

  方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的取值范围是x<—2.

  2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.

  方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.

  四.随堂练习

  1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

  2.利用图象解不等式5x—1>2x+5.

  五.课时小结

  本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

  六.课后作业

  习题14.3─3、4、7题.

  七.活动与探究

  a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

   :

  本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

  个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

一次函数教案9

  【教学目标】

  【知识目标】

  1、使学生初步理解二元一次方程与一次函数的关系

  2、能根据一次函数的图象求二元一次方程组的近似解.

  3、能利用二元一次方程组确定一次函数的表达式

  【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.

  【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.

  【教学重点】

  1、二元一次方程和一次函数的关系

  2、能根据一次函数的图象求二元一次方程组的`近似解

  【教学难点】方程和函数之间的对应关系即数形结合的意识和能力

  知识点

  一、学生起点分析:

  学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

  学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

  二、学习任务分析:

  本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

  1.初步理解二元一次方程和一次函数的关系;

  2.掌握二元一次方程组和对应的两条直线之间的关系;

  3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.

  教学重点

  二元一次方程和一次函数的关系;

  教学难点

  数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.

  同步练习

  A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?

  三典型例题,探究一次函数解析式的确定

  内容:例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.

  (1)写出y与x之间的函数表达式;

  (2)旅客最多可免费携带多少千克的行李?

一次函数教案10

  ●教学目标

  (一)教学知识点

  1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.

  2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.

  (二)能力训练要求

  能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.

  (三)情感与价值观要求

  能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.

  ●教学重点

  根据所给信息确定一次函数的表达式.

  ●教学难点

  用一次函数的知识解决有关现实问题.

  ●教学方法

  启发引导法.

  ●教具准备

  小黑板、三角板

  ●教学过程

  Ⅰ.导入新课

  [师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.

  Ⅱ.讲授新课

  一、试一试(阅读课文P167页)想想下面的问题,数学教案-确定一次函数的表达式。

  某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。

  (1)写出v与t之间的关系式;

  (2)下滑3秒时物体的速度是多少?

  分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的.图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析

  式求出待定系数即可.

  [师]请大家先思考解题的思路,然后和同伴进行交流.

  [生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.

  解:由题意可知v是t的正比例函数.

  设v=kt

  ∵(2,5)在函数图象上

  ∴2k=5

  ∴k=

  ∴v与t的关系式为

  v= t

  (2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.

  解:当t=3时

  v=×3= =7.5(米/秒)

  二、想一想

  [师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.

  [生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;

  第二步设函数的表达式;

  第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.

  第四步解出k,b值.

  第五步把k,b的值代回到表达式中即可.

  [师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?

  [生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.

  三、阅读课文P167页例一,尝试分析解答下面例题

  [例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的

  一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.

  [师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.

  [生]没有画图象.

  [师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?

  [生]因为题中已告诉是一次函数.

  [师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.

  [生]解:设y=kx+b,根据题意,得

  15=k+b, ①

  16=3k+b. ②

  由①得b=15-k

  由②得b=16-3k

  ∴15-k=16-3k

  即k=0.5

  把k=0.5代入①,得k=14.5

  所以在弹性限度内.

  y=0.5x+14.5

  当x=4时

  y=0.5×4+14.5=16.5(厘米)

  即物体的质量为4千克时,弹簧长度为16.5厘米.

  [师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.

  [生]它们的相同步骤是第二步到第四步.

  求函数表达式的步骤有:

  1.设函数表达式.

  2.根据已知条件列出有关方程.

  3.解方程.

  4.把求出的k,b值代回到表达式中即可.

  四.课堂练习

  (一)随堂练习P168页

  (题目见教材)

  解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)

  (题目见教材)

  解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。

  五.课时小结

  本节课我们主要学习了根据已知条件,如何求函数的表达式.

  其步骤如下:

  1.设函数表达式;

  2.根据已知条件列出有关k,b的方程;

  3.解方程,求k,b;

  4.把k,b代回表达式中,写出表达式.

  六、布置作业:P169页1、2

  数学教案-确定一次函数的表达式

一次函数教案11

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的.概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

一次函数教案12

  一、课程标准要求:

  ①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

  ②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。

  ③理解正比例函数。

  ④能根据一次函数的图象求二元一次方程组的近似解。

  ⑤能用一次函数解决实际问题。

  二、识方法回顾:

  1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.

  2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .

  3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .

  4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .

  5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.

  6.把直线y= - 2(3)x -2向 平移 个单位,得到直线y= - 2(3)(x+4)

  7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的解析式是 .

  8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .

  三、典型例题讲解:

  例1 已知一次函数y=-2x-6。

  (1)当x=-4时,则y= ,

  当y=-2时,则x=

  (2)画出函数图象;

  (3)不等式-2x-60解集是_____,

  不等式-2x-60解集是_____;

  (4)函数图像与坐标轴围成的三角形的面积为

  (5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;

  (6)如果y 的取值范围-42,则x的取值范围__________;

  (7)如果x的取值范围-33,则y的最大值是________,最小值是_______.

  例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.

  例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的`面积.

  例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

  (1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;

  (2)在同一坐标系中作出它们的图像;

  (3)根据图像回答问题:

  ①印刷800份说明书时,选择哪家印刷厂比较合算?

  ②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?

  四、探究实践:

  【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).

  (1)求此一次函数的解析式;

  (2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;

  (3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;

  (4)求这两条直线与x轴所围成的三角形面积.

  【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.设卖报人每天从报社批出x份报纸,月利润为y元.

  (1)写出y与x的函数关系式;

  (2)画出此函数的图象;

  (3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?

  五、巩固练习:

  1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.

  2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.

  3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.

  4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。已知汽车和火车从A地到B地的运输路程均为s千米。这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:

  运输工具

  行驶速度(千米/小时)

  运费单价(元/吨千米)

  装卸总费用(元)

  汽车

  50

  2

  3000

  火车

  80

  1.7

  4620

  说明:1元/吨千米表示每吨每千米1元

  (1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);

  (2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?

  六、小结 本节我们主要是学习了哪些内容?

  七、

一次函数教案13

  一、学习目标:

  1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;

  2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;

  3、会运用一次函数图像及性质解决简单的问题;

  4、会用待定系数法确定一次函数的解析式。

  二、基本知识点突破:

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 ,如果给定一个x值, 相应地就唯一确定了一个值,那么就 是_____ 的函数;

  2、一次函数的概念:若两个变量x,间的函数关系式可以表示成 的形式,则称 是 的一次函数, 为自变量, 为因变量。特别地, 时,称 。

  正比例函数是_____________的特殊形式,因此正比例函数都是_______,而 一次函 数不一定都是_________.

  3、判断一个函数是不是一次函数的条件:

  (1)、 的个数;(2)、自变量的` 和 ;(3)、分母中是否含有

  4、一次函数图像、性质及其解析式的确定:

  函数

  类型

  、b的

  取值范围

  图像

  增减性

  经过特殊点

  函数解析式的确定

  (基本思路)

  =x+b

  (≠0,

  b为常数)

  ﹥0

  b﹥0

  与x轴的交点坐标是( , ),与轴的交点坐标是( , )

  1、设函数解 析式为

  2、代入已知两点的坐标或者x,的两组对应值,得到

  3、解

  4、写出函数解析式

  b﹤0

  ﹤0

  b﹥0

  b﹤0

  = x

  (≠0)

  ﹥0

  正比例函数的图像都经过( , )

  1、设函数解析式为

  2、代入已知一点的坐标或者x,的一组对应值,得到

  3、解

  4、写出函数解析式

  ﹤0

  三、整合集训

  目标1 知道什么是函数,并能判断某变化过程中两个变量之间的的关系是否函数关系

  已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积随上底x的变化而变化。

  (1)梯形的面积与上底的长x之间的关系是否是函数关系?为什么?

  (2)若是x的函数,试写出与x之间的函数关系式 。

  目标2 知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数

  1.函数:①=- x x;②= -1;③= ;④=x2+3x-1;⑤=x+4;⑥=3. 6x, 一次函数有___ __;正比例函数有____________(填序号).

  *2.函数=(2-1)x+3是一次函数,则的取值范围是( )A.≠1 B.≠-1 C.≠±1 D.为任意实数.

  *3.若一次函数=(1+2)x+2-1是正比 例函数,则=_______.

  目标3 会运用一次函数图像及性质解决简单的问 题

  1 . 正比例函数= x,若随x的增大而减 小,则______.

  2. 一次函数=x+n的图象如图,则下面正确的是( )

  A.<0,n<0 B.<0,n>0 C.>0,n>0 D.>0,n<0

  3.一次函数=-2x+ 4的图象经过的象限是_______,它与x轴的交 点坐标是_____,与轴的交点坐标是_______.

  4. 已知一次函 数 =(-2)x+(+2),若它的图象经过原点,则=_____;若随x的增大而增大,则__________.

  *5.若一次函数=x-b满足b<0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  目标4 会用待定系数法确定一次函数的解析式。

  1、正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数=x+b的图象如上图所示,求此一次函数的解析式。

  四、小结提高(谈谈本节课的收获)

  五、作业:

  1、已知一次函数=x+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  2、已知-1与x成正比例,且 x=-2时,=-4.(1)求出与x之间的函数关系式;(2)当x=3时,求的值.

一次函数教案14

  教学目标

  1.知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

  2.过程与方法

  经历探索一次函数的应用问题,发展抽象思维.

  3.情感、态度与价值观

  培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.

  重、难点与关键

  1.重点:一次函数的应用.

  2.难点:一次函数的应用.

  3.关键:从数形结合分析思路入手,提升应用思维.

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

  教学过程

  一、范例点击,应用所学

  例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

  y=

  例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的.费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

  拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习.

  三、课堂,发展潜能

  由学生自我本节课的表现.

  四、布置作业,专题突破

  课本P120习题14.2第9,10,11题.

  板书设计

  14.2.2一次函数(4)

  1、一次函数的应用例:

  练习:

一次函数教案15

  在数轴上除了有-1,-2,0,1,2,…有理数之外还存在着无理数,如以坐标圆点为顶点,以单位“1”的长度作正方形,则对角线的长度为,再以0点为圆心,对角线的长为半径画弧线与数轴交于点B,所以B点表示的数就是无理数,以此类推,我们还可以得到,-,…等更多的无理数,因此有理数和无理数就把数轴上的所有点填满了,所以实数与数轴上的点是一一对应的关系。并且数轴上的数从左到右逐渐增大

  案例二:如图(2)在数轴上:

  分析:在案例二的第二个问题中,是把形化为数,这是解决此类问题的突破口,也就是解题的瓶颈,只有利用形与数的完美结合与互化才能解决此类问题,体现了数形结合的思想价值。

  1.2相反数与绝对值

  相反数是指只有符号不同的两个数互为相反数,而绝对值是指一个数离开坐标原点的长度单位(注0的相反数与绝对值都是它本身),在相反数与绝对值的数学过程中,如果采用数形结合的方法进行教学,那么取得的教学效果是事半功倍。如图(2)中,1的相反数是-1,-2的相反数是2,的相反数是-,4的相反数是-4,1=1 -2=2 -3=3

  由此我们还可以得出结论:①数轴上的数从左到右逐渐增大,②对于负数绝对值越大的数反而越小,③负数的绝对值等于它的相反数,正数的绝对值等于它本身,④互为相反数的两个数绝对值相等。在案例一,案例二中,如果我们只采用“数”的方法讲解,而不采用“数与形”结合的方式,学生是很难理解的,只有把数与形互相结合起来,真正做到直观化,形象化,学生就能够一目了然,由此我们还可以把问题由特殊化转为一般化,就可以很轻松的得到结论

  解。反之,如果在平面直角坐标系中,知道了两条直线L1和L2的交点坐标,也可以根据交点坐标得出相应的方程组。

  3.解决一元一次不等式(组)和一次函数结合的问题

  在近几年中,考察不等式的题型在原有的填空题,选择题,解答题,求不等式组的解集的基础上有了新的突破。特别是在不等式与方程结合的实际方案优化设计问题,不等式和一次函数结合方面考察的较多。解决这类问题的关键是采用数形结合的思想,把“数”化为“形”,使复杂问题简单化。

  案例5.已知直线经过点A(-1,-2)和点B(-2,0),直线经过点A,求不等式的解集。

  解析:如果采用单一的“数”的形式来解决这类问题(即用代数的方法),需要把点的坐标代入函数关系式中,用“待定系数”法求出函数关系式,再把函数关系式代入不等式中组成不等式组,最后求出不等式组的解集。虽然这样处理问题,能够得到最终的答案,但是做起来感觉比较繁,又会浪费我们许多宝贵的时间。如果采用“数形结合”的办法来解决,会起到把复杂问题简单化,起到立竿见影,事半功倍的效果。

  解析:⑴建立平面直角坐标系,作出函数图象,如图(5)所示。

  ⑵由函数图象可知:函数是减函数y随x的增大而减小,并且当x>-2时y-2时

  x0.即x0

  ⑶函数是正比例函数,y随x的增大而增大。当x>O时y>O,即2x>O,当x

  ⑷函数与相交于点A(-1,-2),都与直线x = -1相交,并且在直线x = -1的左侧是>2x,在x = -1的右侧是

  因此不等式的解集是-2

  由函数图象我们还以得到不等式的解集是-1

  这样,我们就把复杂的问题简单化,从而起到优化解题途径的目的,做到“数”与“形”的互变。让学生产生豁然开朗的感觉,不仅提高了学习效率,还培养了学生的学习兴趣。

  4.以形助数解决函数问题

  在初中的教学内容中,函数包括一次函数,反比例函数和二次函数。在教学过程中数形结合的教学方法是解决函数问题的关键,要学会从“数”分析到“形”,由数的特征想到形的特征,又由形的特征想到数的特征,能够变抽象思维为形象思维。这样有助于把握数学问题的本质,做到由数思形,以形想数。

  4.1解决一次函数问题

  一次函数是历年学业水平测试命题的重要考点,尤其是最近几年,越来越受到重视,考查这部分的试题不仅数量多,而且题型新,一些与现实生活密切相关的应用题、阅读题、开放探索题等层出不穷,解决这类问题的关键是利用数形结合的办法。

  案例6.如图(6)所示:小虹准备到甲、乙两商场去应聘,下图中L1,L2分别表示了甲、乙两商场每月付给员工的工资y1和y2(单位:元)与销售商品的件数x(单位:件)的关系。

  ⑴根据图象分别求出y1,y2与x的函数关系式。

  ⑵根据图象直接回答:如果小虹决定去应聘,她可能会选择甲商场还是乙商场?

  解:(1)设L1的函数关系式为y1=k1x,把(40,600)带入y1=k1x中,得40k1=600,解这个方程,得k1=15,所以y1与x的函数关系式为y1=15x.

  设L2的函数关系式为y2=k2x+b.把(0,400)与(40,600)带人y2=k2x+b中,得。解这个方程组,得。所以y2与x的函数关系式为y2=5x+400

  (2)当销售件数大于40件时,选择甲商场

  当销售件数小于40件时,选择乙商场

  当销售件数等于40件时,选择去甲商场或乙商场都一样。

  4.2解决反比例函数与一次函数结合的问题

  反比例函数也是学业水平测试的必考内容,近年来备受青睐。反比例函数的图象与性质、解析式的确定及实践应用都是热点。在解答题中主要考查反比例函数与一次函数结合为主,难度处于低、中档次。

  案例7.如图(7)所示:已知一次函数y1=x+2与反比例函数y2=图象相交于A,B两点,A点坐标为(1,3)。

  ⑴试确定B点的坐标及反比例函数的.表达式。

  ⑵若y1>y2时,求x的取值范围

  解:⑴反比例函数y2=的图象经过点A(1,3)

  ,k=3

  反比例函数的表达式为

  由消去y,得x2+2x-3=0,即(x+3)(x-1)=0

  x=-3或x=1,可的y=-1或y=3

  于是或

  点B在第三象限,点B的坐标为B(-3,-1)

  ⑵要求y1>y2时,x的取值范围,即x+2> 。此时对于初中的学生来说,要用代数的方法解决这个问题是很难的,可以说是无法解出的。要解决这个问题,我们只能借助函数图象,采用数形结合的办法来解决,使问题简单化。

  解析:①分别过一次函数和反比例函数图象的交点作x轴的垂线,分别与x轴相交于-3和1(即直线x=-3和直线x=1,如图(7)中的虚线所示)。②分别以直线x=-3和直线x=1的左右来区分是一次函数的值大,还是反比例函数的值大。而在直线x=-3和直线x=1的左右两边,什么函数图象在上,就是该函数的函数值大。③根据函数值确定自变量的取值范围(注:自变量x不能取到0,要与y轴为分界线)

  因此y1>y2时,x的取值范围就只能在直线x=-3和直线x=1的右边来确定。因为在直线x=-3和直线x=1的右边都是一次函数的图象在上,所以y1>y2时,自变量x的取值范围是-3

  4.3解决二次函数的问题。

  二次函数是初中水平测试命题的热点,各种题型,各档次试题都会涉及。特别是与实际生活相关的阅读理解题、实际应用题、探索题在最近几年中更为突出。解决这类问题的关键是利用二次函数的图像与性质,建立二次函数模型,用数形结合的思想方法进行。

  5.解决概率的问题。

  例8.在一个不透明的口袋里装有5个分别标有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同。现从口袋里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标。那么点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率是多少呢?

  解:⑴画树形图表示点P的所有可能情况

  开始

  ⑵点P的坐标有P1(1,1),P2(2,4),P3(0,0),P4(-1,1),P5(-2,4).其中点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的点只有P1(1,1),所以点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率为。

  6.教学过程中要注意数学思想的培养

  中学阶段的数学基本思想包括分类讨论的思想,数形结合思想,变换与转化的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想等等,中学数学中处处渗透着基本数学思想,如果能使它落实到学生学习和教学上,就能够发展学生的数学能力。其中数形结合思想使一种很重要的思想,它贯穿于整个初中数学的教学内容中。对中学数形结合思想的研究有助于我们更好的掌握中学数学知识,提高解题能力,尤其在初三系统复习中,如果教师利用好“数形结合”思想来培养学生的学习兴趣,那么提高学习效率,提高教学成绩是有很大帮助的,我们就能在学业水平测试中取得优异的成绩。

【一次函数教案】相关文章:

一次函数教案02-21

《一次函数》说课稿11-24

一次函数 05-28

一次函数 02-22

《一次函数》 06-10

一次函数图像 02-19

《一次函数》 范文10-07

一次函数的图像和性质 11-18

《一次函数与一元一次不等式》 01-15

Baidu
map