简便计算
身为一名优秀的人民教师,教学是我们的任务之一, 能很好的记录下我们的课堂经验,怎样写 才更能起到其作用呢?下面是小编收集整理的简便计算 ,仅供参考,欢迎大家阅读。
简便计算 1
教学加减法、乘除法的运算定律,学生对单纯的运算定律能有个初步的理解,但是对实际计算中运算定律的运用不能灵活地加以运用,对这节的教学我有以下几点想法:
1、充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流,相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。
3.注重教学内容的现实性。
(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的`方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课首先引导学生观察身边的现象,渗透变与不变的的观点;采撷生活数学的实例。引导学生产生疑问,同时激发学生大胆探索的兴趣。
(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。
简便计算 2
本节课的教学分四个部分,第一部分:复习旧知,体验“凑整”的思想;第二部分:教学例题和试一试,并进行适当延伸;第三部分:教学一个数加上一个接近整百数的计算。第四部分:运用新知解决实际问题。
第一部分:复习旧知,体验“凑整”的思想
简便运算是充分合理地应用运算定律、运算性质的结果。理解运算定律是学习简便运算的前提。所以设计了本环节,复习加法交换律和加法结合律。紧接着“求三角形角上的三个数的'和”让学生初步体会“凑整”的思想,为新知的学习做有益的铺垫。
第二环节:教学例题和试一试,并进行适当延伸
结合学生生活“急速24点大赛”创设情境,学生通过计算呈现出不同的解答方法,引导学生在比较中体验出应用运算律可以使计算简便,紧接着出示“试一试”的第一题,“要求”学生应用简便方法计算。到这里都是在让学生“体验简便”,然后在“比一比,看谁能很快说出每组气球上三个数的和?”让学生开始“选择简便”。
接下来的教学围绕“体验灵活,适应灵活”进行“变式训练”。
变式一:教学“试一试”的第二题。和例题比较,这题需要先运用“加法交换律”再运用“加法结合律”,为培养学生的逻辑思维,养成良好的计算习惯,在这里强调了第一步是去括号,然后再进行计算,通过前面的教学,学生已经会主动简便去凑整百数了,所以要把78和22结合必须要交换加数的位置,让学生体验灵活运用运算律进行简便计算。
变式二:四个数相加怎样运用简便计算“115+132+118+85”,前面我们练习的都是三个数相加,这道题出现了四个加数,但凑成整十数整百数的方法是不变的。让学生在主动运用加法运算律进行简便计算中,再一次体验简便计算并不局限在三个数相加,从而体验灵活。
在数学学习中,学生不仅要习得知识,而且要习得技能。在基础知识掌握牢固的前提下,我们就可以引导学生学习一些简便运算的技能技法,让学生轻松地进行简便运算。有些题目不能直接根据运算律、运算性质进行简便运算,我们要引导学生学习“拆数凑整”的技法。所以安排了第三部分的教学,也就是变式三:一个数加上一个接近整百数的计算。简便计算就是在题目中找凑成“整百数”、“整十数”,这题引导学生在题目中找“整百数”,找不到整百数的情况下,却会发现题目中有个数接近整百数,需要学生换个思维方式,把接近整百数拆成“整百数加上一个一位数”,也就是“拆数凑整”的方法,但万变不离其宗,拆数的目的仍然是凑整。从而体验灵活地“凑整”。
经过这三道变式训练,让学生由“体验灵活”到“适应灵活”的一个提升。
最后进行全课总结,然后拓展了一题“175+199”,让学生在合作与交流中运用本节课学习的内容,进行灵活运用。概括地说,“引导学生把例题里获得的体验转化成进行简便运算的内在动力,使简便运算成为学生的自我需要和自觉要求”,是我对本节课的思考与追求。
简便计算 3
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的.比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
简便计算 4
本节课一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。在第一节课的教学中,在揭示运算律的意义时,也曾提到过,但只是点到为止。在本节课中是作为重点来讲的。所以在教学时,要着重体现出学生运用加法运算律进行简便计算的探索过程。
一、加强了对比的力度(运用运算律和不运用运算律在计算上的对比)。
例如在教学例题:29+46+54时,首先让学生尝试自行解决,大部学生根据已有的知识,知道应该从左往右计算,先算29+46=75,75+54=129。少部分学生通过观察发现46+54能凑成100,可以先加起来:29+46+54=29+(46+54)。将两种做法让学生书写在黑板上,让学生进行观察比较。追问:第二种方法正确吗?为什么可以先计算46+54呢?(生:可以凑成100,整百数再加一个数就简便了。)这样对比的结果是显而易见的,使学生清楚地认识到进行简便计算是运用运算律的结果,同时学生也能体会到运算律的价值所在。
二、小组活动,巧妙安排,得出规律。
新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的`内心需要的,他们需要动笔计算证实自己的想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。
简便计算 5
满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的'跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
简便计算 6
在本节课中,我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的,理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积。”是重点,学生能利用它更简便灵活地进行计算,是难点。为了突破重难点,我在设计时作了这样的处理:
1、教学中渗透学习方法的指导
因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想———验证———应用”的教学思想引导学生展开自主探究。让学生理解“一个数连续除以两个数,可以用这个数除以两个除数的积”虽然是重点,但不是难点。采用这种教学思路的更多意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。
2、放手让学生尝试计算
给学生独立思考和解决问题的机会,使每一种计算方法都成为源于学生独立判断后的一种自我选择,是学生自己领悟出的,而不是来自于教师的讲解和指导。在算法交流、比较的基础上,让更多的学生体验和感悟到运用除法运算的规律可以使计算更简便,从而提高了学生的.计算能力。
3、加强连减和连除的简便运算的比较
让学生明白减法的逆运算是加法,而除法的逆运算是乘法。这样简便运算时也便于区分。
本课是有遗憾的,对教材和学生的理解比较到位和准确,教学环节的设计比较合理,但课堂节奏的把握欠佳,至少有这样几个环节可以让时间更加紧凑:
1、在第一个环节,男女生比赛计算的时候,我本来的预想是女生计算的快一点,然后再观察算式的特点,他们的结果相同、数据相同,运算的顺序和符号不同,男生是一个数连续除以两个数,女生是除以这两个数的积。在男同学出来20xx÷25÷4=20xx÷(25×4)、1280÷16÷8=1280÷(16×8)简便计算的情况时,没有处理好,在这里,应该有第二套方案,请男生说说理由是什么,为什么可以这样写呢?重点要抓住这里,可以把结论先板书出来:一个数连续除以两个数,可以除以这两个数的积。然后再让学生举例等等进行验证。
2、巩固练习,举一反三,讲评学生作业1280÷(16×8)=1280÷128=10,不变成连除,按原来的运算顺序算,你认为可以吗?完全可以解决“要根据数据特点灵活选择计算方法”这一数学思维,简洁、紧凑、实效。比展示不同方法进行比较可以省时得多?一节原本可以上得很轻松自如的课却出乎意料地变成紧张急促,着实值得自己反思。
有遗憾就会有收获,“追求课堂实效,重视课堂节奏。”还需要在平时不断历练。
简便计算 7
《分数乘法简便计算》 分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:
一是混合运算和简便计算题混淆,乱用简便运算。
二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。
三是分数加减法混合运算与分数乘法计算混淆。针对这些现象我采取了以下措施:
一引导学生回顾分数乘法和加减法的意义,理解各自的'意义;
二联系分数乘法和加减法各自的计算方法,并采取针对性练习;
三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;
四是加强审题的训练,让学生学会判断。
五是加强对比练习,认真分析哪些可以简便,哪些不能简便。
其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。
简便计算 8
关于运算定律与简便计算,上课效果还不错,可是作业中稍稍转弯就出现惨不忍睹的局面。曾经我把它定论为学生思维的灵活性不够,却始终没有从教师角度去反思,那么问题究竟出在哪里?由于准备的内容和新授的知识练习密切,学生往往不需要太多的思考,新授的问题就迎刃而解,这样会大大地缩小学生思维的空间,教学这个载体的作用如何发挥呢?又怎样来培养学生的高层次深度的思考?第二:新授内容的学习有老师帮助检索有关的旧知,离开教师,学生是否能独立解决问题呢?学生自己选择信息检索旧知的能力怎样培养?所以有的学生就会说:“哦,简单,简单!”上课都听得懂,回家自己做练习就困难了,经过反思与揣摩后,,我认为在教学关于运算定律与简便计算应从下面几点找手。
1、充分利用学生已有的感性认识,促进学习的迁移。
对于小学生来说,运算定律的概括具有一定的抽象性。学生由于思维还处在形象思维阶段,分析能力偏低,观察也难于顾全大局,只着眼于数字。学生对于类似题目还是容易混淆。只注意数字,不注意运算符号和根据何种运算定律
好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。
在教学中,我让学生扮演数学医院医生的角色,让他们给就医的“病人”看病和开具药方,
例如:我出示:(1)125×(8+10)=125× 8+10
(2)(25+7)×4=25×4×7×4
(3)(25×7)×4=25×7×25×4
(4)35×9+35=35×(9+1)
学生把每题的`错例都剖析的清清楚楚,这样就帮助学生把这些零散的感性认识上升为理性认识
2、加强数学与现实世界的联系,促进知识的理解与应用。
本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。
3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学
4、在各种教学中,其实我们要注意运用整合观念,从整体来观察。我们的教科书知识显得有点零散,不利于学生的整体思维。因此,象简算这种题目,我们可以把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。我想,这也许更利于学生的学习与思维吧?
简便计算 9
第三单元简便计算已经学完了,说起这单元的内容,可以用千变万化这个词来形容。简便计算,目的在于使用各种运算定律,使复杂的计算变得简单,从而提高计算速度和正确率。正是应该使其简单化的定律,却变成了同学们为之头疼的难题。
在以往教过的学生中,也不乏这样的同学存在,他们对乘法结合律和乘法分配律分辨不清,往往在做题时混在一起使用。比如88×125,这道题可以用两种方法进行简便运算。把88分成80+8,接下来就采用乘法分配律。把88分成8×11,那就必须用乘法结合律,而他们明明分成和的形式,反倒用乘法结合律去做。就是这样一个并不难的题,却把同学们绕得晕头转向。我时常在想,是他们没有彻底理解乘法结合律和乘法分配律吗?如若这样,还得单独对他们进行辅导。除此以外,千变万化的题型,也让刚刚接触这些定律的孩子们张冠李戴,或许是初次接触这么多的定律,或许是还没有找到做题的'窍门,无论什么原因,只要经过刻苦努力,就一定有所收获。
这部分的学习纵然是复杂的,但复杂中也会有规律可循,正如25×4、125×8,诸如这类能够凑整的数相乘或相加,正好运用到定律当中去,只要有25、125的出现,就去找它们的伙伴4和8,如此就能使复杂的计算简单化。我们学习这些定律,不但要掌握基本变化形式,更要灵活运用,还需要反复练习,这样才能提高计算速度和正确率。
简便计算 10
一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的`情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
简便计算 11
连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的。让学生理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积,也可以用这个数先除以第二个数再除以第一个数让运算变得简便”是教学的重点,因此我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”这也是本课的难点。为了突破重难点,我在设计时作了这样的处理:
1、在教学中渗透学习方法的指导,因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想---验证---应用”的教学思想引导学生展开自主探究。采用这种教学思路的意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的'。
2、教学环节设计紧凑,环环相扣,从复习铺垫到新知的探究和巩固练习我都做了精心的设计。复习铺垫部分我设计了几道可以进行简便计算的加法、减法、乘法和除法的练习题,以这几道题为依托为进入下个环节的猜测进行了准备,比如说:148+75+5=343-75-25=25×(4×6)=425-(125+27)=237-38-137=它们都和本节课的知识有紧密的联系,目的是让它们根据这几道题的方法很容易的联想到除法是不是也有这样的规律,事实证明,这几道题是有效的,当我出示4500÷25÷4=时,并提出问题是不是也有简便方法时,很多孩子马上进行了猜测,很自然的引出了新知的探究,让孩子们的猜测更有目的性、方向性和可行性,我认为这个地方的设计思路很好,但由于这些数值偏大,学生算起来不太好算,而这节课重点是为了探究规律,如果把数设计的小一点会更好算,重点会更突出,更节省时间。新知的探究环节我让学生以小组为单位举出这样的实例,这个环节虽然设计很好,但由于孩子年龄小,在举例子时又缺乏引导,很多孩子无所适从,不会举例子,我只好亡羊补牢,又进行引导,结果浪费了宝贵的时间,以至后来的环节时间有点紧,如果备课时再细心一些,充分考虑到孩子的起点,效果会好得多。但是巩固练习部分我觉得设计很好,不仅形式多样而且内容充实,有效的巩固了新知,让孩子对除法的性质和简便运算理解的更透彻,运用得更熟练!不足是因为前面的环节占用时间太多,练习题没有处理完。
这节课还有很多不足,发现规律后,我本来想让学生结合生活实例再次验证,但因为对习题的选择不是太合适,所以只验证了其中的一个规律,而对于第二个规律,习题却不能完成验证,这一点是一个失误,应该进行修正,如果把习题再认真选一选效果一定要会好得多。
还有本节课教师的语言设计不是很精练,不能起到画龙点睛的效果,验证结束后,学生得到连除的计算方法有三种,为了强调简便计算,我应该及时引导:“这三种方法,如果让你选择,你会选择哪一种?”从而让学生明白,解决问题的方法有很多种,但要学会根据算式中的数据特点,灵活选择简便的方法进行计算。这也是我们的数学的价值所在,可惜没有及时引导,很遗憾!
总之,本节课既有成功,又有不足,在第二次上课时,我会扬长补短,争取把这节课上的更完美!
简便计算 12
整数简便运算中学习了乘法交换律、乘法结合律、和乘法分配律。通过课前让孩子回忆,复习了分别用字母怎样表示,并通过实际的题让孩子们练一练整数乘法中简便运算,但给孩子们写出两道用简便方法计算的`小数运算时,孩子们能够想到整数中25 *4 =100 125* 8=1000 25*8=200等经常记住的结论。
在小数中孩子们0。25遇到4也会把它结合在一起,遇到202 、101也会想到用分配律计算,但是遇到0。34*0。5*0。6= 时有点束手无策,只能让孩子观察末尾数字能否凑十,而且选择时还得考虑与水结合简单,所以小数中的简便方法需要练习。
简便计算 13
对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。
一、加强数学与现实世界的联系,促进知识的理解与应用。本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的.愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生、的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。
二、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。简便运算的思路会有很多,但是,只要把握“简便”这个解题关键,正确、合理地使用定律、法则,就应该是正确的。简便计算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。
简便计算 14
今天的教学比较失败,原因在于没有深入的研究教材,没有把握学生的思维脉搏。只是按照教案执行下去,因此,在教学结束后,留下不少的遗憾。回顾一下,主要有这两个地方没有处理好:
一、 简便算法中商的处理不够到位:
课堂结束后,与学生交流的过程中了解到,有的学生对今天的学习内容有一些糊涂的地方没有搞清。例如900÷50,竖式上900个位上的0去掉后,为什么不要在商的个位上写“0”了。
分析原因:
没有沟通900÷50与90÷5之间的联系,没有充分让学生思考为什么商的个位上不用写0的原因。
亡羊补牢:
应该通过思考、组织讨论这个问题达成共识:900÷50根据商不变的规律,它的商与90÷5的商相同,所以去掉0后实际上算的是90÷5的商。因此900个位上的0上面不需要再商0了。
二、 简便算法中余数的'处理不够到位:
在教学900÷40时,因为预设不充分,在学生出现900÷40的竖式中出现了余数写成20时,没有充分的探究这样写是否正确,而一味考虑学生可能会忘记在横式的余数中忘记写0而作了错误的引导。结果课后有学生表示疑惑,既然40当作4来除,那么余数如果是20的话不是比除数大了吗?
亡羊补牢:在上面分析商末尾是否添0的基础上引导学生分析此题竖式最后的余数应该写几,但是横式上的余数应该写几,明确规范的书写方法,进行强化。
简便计算 15
本节课在解决,“还剩多少页没有看”这个问题的过程中,教师可让学生利用自己的生活经验和已有的知识,用自己的思维方式积极主动地尝试解决问题。不同的学生用不同的方法解决问题,最后得出三种解法。教师可以让学生在介绍自己解决问题的.方法的过程中领悟各种简便计算的方法。在交流探索中,培养学生根据具体情况选择简便算法的意识与能力,力求每位学生都能获得成功的喜悦。
在探索简便计算的方法中,让学生将自己的计算方法跟其他同学的方法进行比较,说说自己解法的优点,缺点,通过不同解法的比较来认识和选择最简便的方法。就是有意识的让学生从实例中体会,“多中选优,择优而用”,也体现了《新课标中》的算法多样化的要求。
【简便计算 】相关文章:
简便计算的 10-10
《简便计算》 11-27
简便计算 04-09
《连除简便计算》 07-22
《连减的简便计算》 04-14
简便计算 15篇12-27
简便计算 (15篇)03-13
《运算定律与简便计算》 03-08
《加减法的简便计算》 10-22