圆柱的体积 15篇
作为一名优秀的教师,我们要有一流的教学能力,通过 可以有效提升自己的课堂经验,优秀的 都具备一些什么特点呢?下面是小编整理的圆柱的体积 ,欢迎阅读,希望大家能够喜欢。
圆柱的体积 1
今天第一节课荆校长和建英听了我讲的《圆柱的体积》,提出了几点我应该注意和改进的地方。
一是,要注重课前的预习,圆柱的体积一课复习旧知环节,需要学生回顾什么是体积,长方体正方体体积公式,回顾转化的方法推导圆面积计算公式,需要回顾的旧知较多,所以可以课前设计成几个问题让学生预习,就可以避免课上学生由于对知识的遗忘,而浪费时间,影响课堂的高效。
二是,猜想圆柱的体积可能与什么有关这个环节,由于注重让学生猜想,感受,体验,并通过媒体演示验证猜想的正确性,有些浪费时间。
三是,推导体积公式环节,我让学生利用拆好的圆柱学具,两人合作,围绕三个问题进行探究“圆柱可以转化为我们学过的哪个立体图形,转化后的图形与圆柱之间有怎样的关系,利用这样的关系可以推导出怎样的公式”,学生合作的成果需要通过语言表达出来,所以之后的展示汇报环节,我叫了三个学生上台按照提示的三个问题完整的表述,最后有全体齐说,没有让学生再互相说一说,在说中再去感受推导的过程,我觉得这也是我欠缺的'地方。
四是,练习反馈环节,我依据学生推导出的四个公式,先让学生看着这些公式说一说,求圆柱的体积需要知道什么条件,学生说出了四种情况:知道了半径和高求体积;知道了周长和高求体积;知道了底面积和高求体积;知道了直径和高求体积。我顺势出了四道这样的练习题让学生在本上完成并集体订正,感觉练习的量不够。
通过这节课,从荆校长和建英的评课中,我体会到要想提高课堂效率,首先,抓好课前预习,其次,注重用多种方式让学生多说而且要说透,最后,注意各环节时间分配要合理,做到心中有数。还有就是要加大练习量,关注到每一个学生,对学生学习效果掌握程度做到了如指掌。
圆柱的体积 2
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。
编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。
数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的.表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
圆柱的体积 3
《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:(1)圆柱的体积等于长方体和正方体的`体积。(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
在本节课的教学过程中还存在诸多的问题。
1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。
2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。
3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。
圆柱的体积 4
[头疼问题]
近期六年级的任课教师都会头疼我们也不例外
年级组集体备课时会叹气
在走廊里碰头时会感慨
叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)
这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子
什么地方出问题了?
[细细掂量]
一轮本子改下来错误有以下几类
1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)
2、中等生:求表面积时,大概知道侧面积+两个底面积;但真正列式的时候底面积没乘2;而到了只需要加一个底面积的时候(无盖水桶等实际问题的时候)却乘2;
3、学困生:列出的算式都有问题。一查,圆面积计算公式都不会(够厉害),最基本的都不会,圆柱的表面积和体积又如何能正确求出;个别的20多分钟头都不抬,就在计算一个图形题,仔细一看列式出错,后面的脱式计算过程中的结果有的有6、7位小数;依然不知疲倦的算啊算,看着都累
4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。
[标本兼治]
1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。
2、中等生、学困生:
(1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。
(2)重点分析典型习题,帮助学生找到审题、列式、解题的方法和策略,并针对性练习,提高技能
(3)重点强记:3.14*1=…………………3.14*9= 常用计算结果,达到熟练程度,提高练习时的`计算速度和正确率,也可以用于检验计算过程中的结果正确与否。
(4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。
[写在结尾]
有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。
也欢迎大家说说自己的好的做法,共同提高第二单元的质量
圆柱的体积 5
一、让操作更详实,留下思考的痕迹
《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系
数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握
通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的'体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时
圆柱的体积 6
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体
积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的`参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。
教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!
圆柱的体积 7
本节课的设计思路的优点在于学习自主化。首先,我通过复习导入,揭示了本节课的学习主题,激发了学生的探索学习热情。
然后再以求圆柱的体积为主线,引导学生在课件展示中探索数学问题,认识到知识间的紧密联系。学习自主化,指的`是在整个教学过程中,我注重了学生的自主学习、独立思考,使学生通过“说一说”“辨一辨”等途径来突破教学的重、难点,使学生深刻理解圆柱体积计算公式的推导过程,并通过习题帮助学生记忆圆柱体积的计算公式和运用圆柱体积计算公式来解决一些生活实际问题。
但是,在具体的教学过程中,本课时的教学设计依然存在一些问题。比如:在凸现学习自主化这一学习过程时,我们应给予学生更多的时间和空间来思考,使学生在发现圆柱体积计算方法的同时真正提高学生自主学习的能力,因为学生只有在发现问题和解决问题这一矛盾的相互碰撞中才能深刻理解知识、掌握知识。
圆柱的体积 8
本节课为练习课,目的在于巩固学生前面几个课时的学习内容和发现学生存在的一些问题,然后及时调整或补充教学方案。本节课在教学过程中,发现学生存在的问题主要有:学生对圆柱的侧面展开图的相关知识理解不深入;在计算的'过程中,单位名称用错,如体积单位写成面积单位;对于某些实际问题不能正确分辨圆柱直径、半径以及圆柱的高,导致做题出错。对于这些问题,我们可以通过以下方法来突破:
第一,我们在集中讲解时可穿插一些单位换算的练习等,从而避免学生误用单位名称;
第二,在计算以长方形的一边为轴旋转得到的圆柱体积和计算直接将长方形卷成的圆柱体积之前,我们可先组织学生自己动手操作、观察比较,让学生们自己发现圆柱与长方体各部分之间的关系。
总而言之,我们在引导学生参与到探索知识的发生、发展过程中,应注重突破以往单一、被动的学习方式。
圆柱的体积 9
案例背景:
《数学课程标准》指出:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括形成方法和理论并进行广泛应用的过程。这一描述,明确了小学数学的内涵,即数学学习是一个过程。近日,在市小学数学名师课堂教学展示中,天福小学的刘爱芳校长执教的《圆柱的体积》一课,使我对个人的专业素养和课堂的设计内涵,都有了很深的触动。
案例描述:
片段一:
师:同学们,往这里看,今天老师带来了三件物体:玻璃杯、橡皮泥、金属零件。这三件物体有什么共同点?
生:都是圆柱。
师:圆柱形的物体生活中很多,以这三样为例,你能提出哪些数学问题?
生1:水杯的容积是多少?
生2:水杯的表面积是多少?
生3:水杯的体积是多少?
师:这三个问题很好,我们记下一个。
师板书,水杯容积
生继续提出关于橡皮泥和金属容器的体积的问题,师板书:橡皮泥体积,金属零件体积。
师:关于表面积的问题前面我们已经研究过,这节课我们来研究圆柱体积的问题。
师板书:圆柱体积
师:以你现在的知识储备,你能解决哪个问题?
生:水杯的容积
师:怎样求?
生:可以把水杯的装满水,倒进一个长方体的容器中,计算出长方体容器中水的体积,也就求出了水杯的容积。
师:瞧,“装满水”,“满”这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。
师板书:倒---长方体,转化。
师:在转化过程中,水的什么变了?什么没变?
生:水的形状变了,体积没变。
师:水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?
师:根据学生回答分别板书:捏---正方体,浸----长方体。
师:刚才我们根据这三个物体的共同特点,通过转化,把它们转化成我们以前学过的长方体或正方体的体积。是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?
生:不能。
师:为什么?
生交流,得知物体很大时,没法进行转化。
师:因此,我们需要寻找一种通用的方法,你想到了什么方法?
生:计算。
师:圆柱体体积与什么有关?猜想一下怎样计算?
……
片段二:
师:回顾这节课的学习过程,你认为你最有收获的是什么?
师:前面大家根据长方体和正方体的体积公式猜测出圆柱的体积公式也是底面积×高,通过验证得知大家的猜测是正确的。
师:这三个立体图形有什么共同点?
师:像这样的形体在数学上叫做直柱体。
课件出示:长方体、正方体、圆柱及它们的体积公式都是底面积×高。
师:生活中的直柱体还有哪些?
师:它们的形体是否也是底面积×高?有兴趣的同学可以课后研究。
案例反思:
片段一的教学中,教师出示了三样精心准备的物体----玻璃杯、橡皮泥、金属零件(都是圆柱体),在学生围绕这三种物体提出数学问题后,教师并没有直接引导学生去探求如何计算圆柱体的体积,而是通过“以你现在的知识储备,你能解决哪个问题?”“在转化过程中,水的什么变了?什么没变?”“瞧,‘装满水’,‘满’这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的`数学思想方法----转化。”“水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?”这些引导性语言,使学生明白有些物体的体积可以分别通过倒、捏、浸转化成长方体或正方体的体积来解决,“转化”的提出为学生后面构建数学模型,探究圆柱体积公式奠定了基础。紧接着“是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?”这个问题,点燃了学生的探究欲望,这是这节课成功的起点,通过极限思想的渗透,使学生体会到了探究圆柱体积的计算方法的必要性。
片段二的教学中,教师在引导学生进行学习反思的基础上,进行了拓展延伸。通过对长方体、正方体、圆柱体积公式的归纳汇总,引出直柱体的概念,学生进行了对直柱体表象的交流。此时,学生的探究欲望、学习激情,并没有随着课的尾声而有所减弱,而是探究热情再一次被点燃,孩子们带着强烈的研究热情结束了本节课的学习。
教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。我们在用教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,研究学生学习起点,让学生亲历完整的数学学习过程,触摸数学鲜活生动的生命脉息,体会到知识产生过程中的前因和后果,从而进行有效的数学思考。
圆柱的体积 10
对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。
对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“V=Sh”而不是“V=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,V=Sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的S罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的关系”,还不如只观察两者的底面积S。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的缘故。
对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的.途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。
圆柱的体积 11
本节课教学设计从回忆旧知入手,通过猜测、观察、交流、验证、归纳等数学活动,让学生经历探索新知的全过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。
新授部分,经历了问题引入、猜测、自主探索、合作交流、验证归纳五个环节,环环相扣,步步深入。合作交流这个环节给了学生充足的时间去探索、交流,通过把圆柱切拼成近似的长方体,再对比二者的体积、底面积、高之间的联系,推导出了圆柱的体积计算公式,从而得出圆柱和长方体有着相同的体积计算公式,然后要求学生回顾一下我们是怎样得到“圆柱体的体积=底面积×高”这个结论的。经历了公式的推导过程,也让学生体验了数学问题的探索性和挑战性,感受到数学思考过程的条理性和数学结论的确定性。
课堂上,我将引导启发、自主探究与合作交流等多种教学方式相结合,借助于多媒体课件化静为动,把教师说不清道不明,学生不易理解的圆柱切拼成近似长方体的转化过程一目了然地展现在学生面前。教学设计充分体现了“以学生为中心”的思想,真正方便了学生学习。做到根据教学内容的实际需要,充分发挥多媒体技术的优势,突出教学重点,突破教学难点,丰富了教学内容,精彩了课堂,激发了学生的学习兴趣。
学生在数学课堂上建立起新概念、习得规律之后,必须完成一定数量的数学练习题,才能巩固所学知识。本节课,我充分挖掘习题的价值,在巩固中拓展,让学生的思维不停留于某一固定的'模式中,而能灵活应变,变有限为无限,让不同层次学生的思维水平在原有水平基础上都得以提升。
不足之处:课件代替了板书(由于课前班班通出现小小故障,我在打开课件时有点着急,课件出示错误,又耽误了时间,没有在黑板上板书课题)。时间分配不够合理,练习时板演学生太少(合作交流环节给了学生大量的时间去探索、交流,在练习时已经没有足够的时间了,就让一个学生板演了,致使后边的拓展提高没来得及进行,就进行检测了)。教师的评价方式单一。
改进措施:每节课要准备充分,提前候课,避免出现差错,耽误时间,练习量不够或完不成任务。课堂上要多关注中等偏下的学生,老师的评价机制要多样,让他们学会倾听,乐于学习,多给他们展示交流的机会。课堂上课件只起一个辅助作用,不能喧宾夺主。
今后还要一如继往地做好日教研,上完课及时与本组成员沟通、交流,让课堂教学更高效。
圆柱的体积 12
“圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的.一堂课。
课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。
展开局部,教师为同学提供了动手操作、观察以和交流讨论的平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。
练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自身的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
圆柱的体积 13
在新课程不断向纵深推进的今天,我们的课堂既要继承传统,把课上杂实。同时,也要把课上厚实。在教《圆柱的体积》一课时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识,并利用新知去解决实际问题。对此,我作如下反思:
(一)在学习情境中体验数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。
在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出你能计算圆柱体的体积吗?这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的长方体,然后让学生在小组内利用手中的学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体 ,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。。
由此至终让学生经历了做数学的过程,并伴随着问题的圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。
(二)在观察操作中探索新知
数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的'一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。
在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。 你有什么发现?你是怎样想的?等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。
(三)在练习中巩固新知,提升能力
《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。
(四)在本节课中的不足之处
由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑,在今后的教学中还有待于提高。
圆柱的体积 14
学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的.哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。
非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.
圆柱的体积 15
在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的问题,变书本知识为生活中的知识。
本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。
但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的`教学,这都是以后在教学中应注意的问题。
总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。
【圆柱的体积 】相关文章:
《圆柱的体积》的 07-28
圆柱的体积 08-02
《圆柱的体积》 01-08
《圆柱的体积》 07-30
圆柱的体积 05-08
圆柱体积的 11-30
小学《圆柱的体积》数学 11-04
圆柱的体积 (15篇)04-18
《圆柱体积》 11-28