《解方程》 (精选20篇)
身为一位到岗不久的教师,我们的任务之一就是教学,写 能总结教学过程中的很多讲课技巧,那么什么样的 才是好的呢?以下是小编为大家整理的《解方程》 ,欢迎大家借鉴与参考,希望对大家有所帮助。
《解方程》 1
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,还有老教材中提到的运用关系式各部分之间的关系来解决?面对困惑,向老教师请教,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的'方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。
通过这块知识的整理,我感觉到教材需要教师好好的研究,才能用最合适的方式去教导学生,数学经常存在一种一题多解情况,老师就是引导学生走最好最合适的路。
《解方程》 2
本节课是在认识用字母表示数的基础上进行教学的,用天平保持平衡的原理解方程教学利,也就是我们常说的等式的基本性质解方程。
教学中我先利用板书演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例 1 ,让学生列出方程 x+3=9 ,用课件演示 x+3 个方块 =9 个方块,提问: “ 如果要称出 x 有多块,怎么办? ” ,引导学生思考,只要将天平两端同时减去 3 个方块,天平仍平衡,得到一个 x 相当于 6 个方块,从而得到 x=6 。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案: x+3-3=9-3 ,于是我问:为什么方程两边要同时减去 3 ,而不减去其它数呢?学生沉默,有学生说, “ 为了得到一个 x 得多少 ” ,我又强调了一遍,我求一个 x 的多少,所以要把多余的' 3 减去。接下来教学例 2 ,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成 3 分,得到每份是 6 的基础上,我用板演演示了分的过程,让学生把演示过程写出来,从而解出方程。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为 0 的数,方程两边仍然相等。
按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练着大大出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:
一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去 3 个方块,就相当于方程两边同时减去 3 ,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式;
二是对为什么要减去 3 讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去 3 却还似懂非懂,如果当时举例说明也许很有效果,比如: x-3=6 ,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个 x 是多少,就要根据方程的具体情况,若比 x 多余的就要减去,不足 x 的就要补足,这样效果肯定好些。
《解方程》 3
解方程的内容主要是在五年级就学过的,但六年级上期仍然出现了解方程的内容,说明了这个知识点的重要性,既是重点,又是难点。在具体的解方程过程中,通过学生的课堂活动和课后作业反馈,总的说来,还是存在很大的问题。我出了12个题,全对的占少数,一般要错四个左右。下来后我进行了深刻的反思。发现了几个主要错误:
1、马虎。体现在抄题抄错,全班64人有6个抄错了题。
2、较复杂点的解方程,思路混乱,不知道把哪一部分看作“整体”。
3、过于依赖计算器,对于除不尽的笔算出错。
4、错得最多的是减数和除数中含有未知数的情况。
针对以上几个错误,我认真做了分析,主要的原因有下面几个:
1、课前过于高估学生,没有系统的复习相关内容。
2、现在这个班是上个五年级两个班重新分的班,下来我问了前面教过的数学老师,两个老师教的方法不一样。
3、作业量不够。
所以,在后期的教学中做了一些调整:
1、系统复习了相关知识。
2、多作例题讲解,由易入难。
3、有针对性的出题,容易出错的地方进行大量的'练习。
4、搞了一个“我是一个小老师”的活动,全对的同学给其他同学当老师,一个对一个的教。
5、要求每个同学都独立的出一个解方程的题,然后请一个同学完成并作评价。
经过锻炼,现在对解方程这个这知识点,同学们兴趣和完成率大有提高。
《解方程》 4
本节课的学生学习的重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;学习目标是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解稍复杂的方程这部分内容烦琐乏味,解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的事物入手,引出数学问题,激发学生的学习数学的兴趣,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的`教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色多少块,黑色多少块,白色比黑色少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法。
让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
《解方程》 5
1、教材的编排上难度下降。有意避开了,形如:7.8—X=2.6,12÷X=1.2等类型的题目。把用等式解决的方法单一化了,这和提倡算法多样化又有了矛盾。尽管老师一再强调用等式的性质解,还是有多数学生用原来的方法解答。
2、强调书写格式得有层次。告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,如果有过程,方程中的等号不易上下对齐,这点问题不大。到熟练之后省去过程时再强调格式。
3、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,()可以实际上反而是多了。教师要给他们补充X在后面的方程的解法。要教他们列方程时怎么避免X在后面这样方程的出现等等。
在实际教学中我们要求学生较熟练地利用等式的方法来解方程,用这样的方法来解方程之后,书本中不再出现X做减数,除数的方程题了,但学生在列方程解实际应用时,学生列出的方程中还有这样的题目,但不会解答,这时我们又要强调算法多样化,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的'学生还很难掌握这样方法。有的学生又不得不用除、减法各部分间的关系做题。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。因此教学中我还是对学生说尽量用方程的性质解,若遇到用等式的性质解决不了时,可以用以前学过的知识解答。
《解方程》 6
教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的关系混乱容易出错,而初中的教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的关系讲解一遍。然后让学生根据自己实际情况灵活运用。
可是跟设想的不一样,利用等式的性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。
1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的`形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。
2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。
所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。
《解方程》 7
今天,上了冀教版五年级上册《解方程》一课,我就本节课的得与失做一下反思。
一、课程分析
方程是五年级学生接触的一种新的知识内容,在建立了用字母表示数的已有知识基础上,进一步学习本节课内容,方程是数学数与代数部分的内容,起着举足轻重的作用。方程是学生解决数学问题一种重要工具,日后初中、高中时时刻刻离不开方程。所以,我对本单元内容很重视,也给学生讲述其重要性,重点还是要让学生在学习、使用的过程中体会方程的优势。本节课是本单元的第三节内容,在学习了等式的性质的基础上,解简单的方程。因此,我制订了以下教学目标:
1.经历自主探究、合作交流学习利用等式的性质解方程的过程。
2.能根据具体情境,找到等量关系、列方程并解简单的方程。
3.积极参与数学活动,获得运用已有知识解决问题的成功体验,激发解方程的兴趣。
二、教学过程
1.复习旧知导入。复习刚刚学过的等式的性质,学生举例说明。
2.交流解疑。先对子交流、小组交流,解决预习过程中的疑问,同时整理出小组未能解决的疑难问题。
3.展示交流。学生代表1展示问题1的解决方法,学生提问、补充。这里使学生理解用方程解决问题的步骤、解方程的方法、检验的方法。学生代表2展示问题2的解决方法,再次理解以上问题。
4.理解新概念。观察两个解方程的式子,理解方程的.解、解方程的概念。让学生对比理解方程的解是结果,解方程是过程。
5.巩固训练、强调细节。学生自主完成试一试两题,出错时让学生指正。若未出错,强调注意写“解”、等号对齐等细节。
三、课后反思
本节课需要改进的地方
1.学习目标的制定与出示。上课之前只给学生说了我们本节课要利用等式基本性质来解方程,目标不具体。我们应为学生制定具体的学习目标,同时要让学生知道。可以在给学生预习时,给学生以问题的形式出示给学生。一次本节课学习目标应为:
(1)用方程解决问题的步骤是什么?
(2)解方程的依据是什么?
(3)什么叫方程的解?什么叫解方程?
2.旧知复习时间过长。学生复习等式性质时,举例出现问题,浪费了许多时间,造成了前松后紧的局面。应该简单复习,或让学生在探索新知的过程中发现旧知,复习旧知。
3.小组合作的实效性。现在我班的小组合作还不扎实,或者说实效性不强。学生在讨论的过程中不知道该如何合作、如何交流。可以说是有形无实,接下来要再次培训组长,让组长有组织、带领小组同学有效合作。同时,训练其他同学如何参与,交流什么。使小组合作更具实效性。
四、教学思考
1.教学有法,但无定法。我们在求疑尝试的主体学习方法下,应探索出属于自己的上课模式或者方法。我一直在想数学四大模块应有不同的教学方法,例如图形问题注重操作、可能性问题注重游戏体验等。
2.全面关注学生,关注全体学生。我的班级是一个比较活跃的班级,这里的活跃其实只是课堂上七、八个积极同学的表现,这种现象的背后还有更多的同学没有参与、只是听众,没有参与就没有思考,没有思考地学数学何来成效。所以最近一直在关注大号同学的表现,教师关注会使他们获得自信,获得成功后的喜悦,学习也自然有动力。举个我们班的例子:上《认识方程》一课时,因为较简单,整节课我一直在关注3、4号同学的表现,给他们更多的机会展示,结果课后我发现3、4号同学的作业有明显的进步,甚至有个别4号同学比组长写的都要好。也就是欣赏、关注的成果。
以上两个问题有待我们一起思考,请各位领导、战友多提宝贵意见!
《解方程》 8
解方程这部分教学内容与老教材相比有很大的差异,尤其是在方程的解法上,利用天平平衡的道理解方程,学生在理解和运用上都有一定的困难,而且本部分教学很是枯燥无味,于是我加入了探秘的情节,和本节课完全吻合。下面就我讲授的这节课做一下反思:
一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的.尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,它能使方程的左右两边相等,不信咱们试一试。”由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。
二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
本节课不足之处在于最后留的时间过少,检验的格式没有完整的交给孩子们。可内心矛盾:检验的目的已经达到了,必须要重视其格式吗?
总体来说,喜欢让孩子们在快乐中学到知识,喜欢听孩子们说:“我还想再写。”
《解方程》 9
《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在认识用字母表示数的基础上进行教学的,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。
我对课时安排及教学设计均做了较大调整。原订计划是第一课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第二课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第一课时完成“方程的解”及“解方程”概念教学、会解形如X±A=B的方程,掌握检验的格式;第二课时只完成乘除法方程的解法。我上的是第一课时,其次对于教学设计也做了相应处理,将例1 改为:X+20=70,又将X-a=b形式的方程穿插学习过程之中。
为什么我会做如此改动呢?基于以下两点原因:
1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。
2、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。总体思路如下:
1、从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。
2、通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。
3、给足够的时间让学生学习,让学生发现。
4、多层次的练习形式,有利于学生对知识进一步的理解与掌握,并及时有效地巩固强化概念。
5、教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。
6、自学思考汇报交流既有利于每个学生的'自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
在具体教学过程中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
教学中我先利用课件演示了“我说你答”的游戏让学生回顾:天平两端同时加上或减去同样的重量,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例题X+20=70
二、利用 等式性质解方程-,初步感悟它的妙用
在计算过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,通过讨论:方程X+20=70中左右两边同时减去的为什么是20,而不是其它数呢?让学生明白:左边减去20是为了使方程左边只剩,右边减去20是为了使方程两边仍然相等!不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
三、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。
通过教学,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一点困惑:
从教材的编排上,整体难度下降,有意避开了,形如:A—X=B 和 A÷X=B等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。这会不会与教材主倡导的用等式的性质解决问题有矛盾呢?
《解方程》 10
学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。
案例描述:苏教版数学六年级下册教材
教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?
学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。
在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生X人,女生就有80%X人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程
X+80%X=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为X。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数X的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是X人,男生人数是X÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:X+X÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?
仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人数设为X人呢?学生思考了一会列出:X+X÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的.方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:X+80%X=36、X+X÷80%=36哪一个解起来不较容易?学生通过计算终于明白:X+80%X=36方程的优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有X人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%X人,而且X+80%X=36是学生熟悉的形如:aX+bX=c(这里a,b,c已知),而X+X÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为aX+bX=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。
《解方程》 11
有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。
本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:
1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。
2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。
基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的'方法。分析此次教学失败的`原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”,这可真是越变越复杂。
值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,我觉得按加减乘除法各部分之间的关系教好呢,而用等式的性质教学好比较复杂。
《解方程》 12
一、认知基础的“顽固性”
心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的.等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。
以前教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,比较两种思路:第一种方法是把未知数x优先从背景中筛选出来,依据四则运算各部分之间的关系求出x的值;第二种方法用“结构性观点”去看待方程,着眼于其所表明的等量关系,体现了方程思想的本质,较好地解决了中小学关于方程解法的衔接问题。《数学课程标准》也明确要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。那么,教材编排的价值是不容置疑的,即不能因为学生思维的轻车熟路,而忽视新知的教学,忽视学生数学思想的进一步提升。利用关系式这种方法解方程书写较少,形式简单,但教学时总碰到差生不理解关系式也记不住关系式,因此在解方程时因想不起关系式而不会解。这几星期的教学,我发现孩子们还是比较喜欢学的,学得也不错,教材利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。教材又通过天平平衡原理过渡到等式的性质,从而利用等式的性质教学解方程,使得解方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,学得不错,但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。我发现用等式性质教这类方程,比较麻烦,学生学起来有一定难度。
二、两种方法形式上的相似引发学生思维的惰性
第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。
方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。
《解方程》 13
一、引入了天平,理解等式的性质。
新教材的突出之处从直观的天平入手,天平的两边同时加上或减去相同的重量,仍然保持平衡,这样就引入了等式的性质1,利用这个性质,可以解决a+x=b,或a-x=b的方程,接着又从天平的两边同时乘或除以相同的非零的数,天平仍然平衡,可以解决ax=b或x÷a=b的方程。从长远角度看,学生经过这样的学习,对于七年级以后的后续学习减少了障碍,很好地做好了衔接。
二、两条脚走路,解决不便的问题。
教材中有意避免了形如-x或÷x的方程的出现,可是在实际中,出现这种方程是不可避免的,如果出现了,我们教者如何解释呢?学生又应如何解答呢?当然还可以根据等式的性质来进行左右两边的化解,使得左边或右边变为形如x的情况,学生对于其中的减数与除数为未知数还可以启发他运用四则运算的内部的关系来解决。不要怕给了学生又一种选择的机会,这样在用等式的性质解决问题不方便时,未尝不是一种好的方法。
三、抓住其本质,简化方程的过程。
两边同时加上或减去同一个数的过程,其本质是为什么要这么做,当学生经过思考发现这样的过程就是把方程的一边变为只剩下未知数的过程,因而可以简化一些不必要的多余过程,典型的如x+5=20,x+5-5=20+5,让学生通过计算体验这样的第二步过程实际即为x=20+5,因而可以使方程的解答变得简便。学生觉得当然还是简便的过程值得效仿,积极性显得非常之高。
四、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的.正确率也提高了。
同时,在这部分的教学期间,也有一些问题引发了个人的一些思考。
首先是学习中如何提高学生的学习规范性,方程的解答是一种规范的过程,它有一些固定的格式,例如必须写“解:”,必须“=”上下对齐,要正确必须进行检验等,而这些都必须让学生多进行训练,多强化练习,理解各种题型的结构。
其次是对于特殊方程的解答,如减数与除数为未知数的方程,用两种方法解决的问题,可能会引起部分的的不理解,会不会与教材主倡导的用等式的性质解决问题有矛盾呢
《解方程》 14
本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的旧知识来解决,那你认为应该把这样的减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?
通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的'方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。
《解方程》 15
解方程是是数学知识里面很关键很重要的一个知识点。,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系”解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。
因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的'知识不丢,方法又可以多种变通。所以我在教学解方程的时候,给他们灌输了两种方法,第一种方法就是课本上的根据等式的性质去解方程,另一种方式就是初中阶段的“移项”,在这里的时候,我给初中的“移项”起了一个新的名字:移——变号。引入了这一个方法,学生解方程的兴致有了很大的提高,解方程也变得容易了许多。
但是在移-变号这种情况下,有出现了21÷x=7,和20-x=3的这样的特殊情况,而我则让他们记住,只要x在后面,就要运用到四则运算“除数=被除数÷商”和“减数=被减数-差”这两种情况。通过练习,学生解方程正确率有了很大的提高,但是与之而来的是,学生忘了等式的兴致,忘了移—变号是怎么来的,而我,则在移-变号的基础上,再一次的回顾,让他们明白移-变号的立脚点就是等式的性质,如此反复,学生加强了对解方程的认识,也更牢固的记住了等式的兴致。而通过这一次的上课,我意识到,老师在上课之前,一定要更好的预设,只有在这样的情况下,生成的结果,才不会顾此失彼。而身为老师,一定要好好的研究教材,钻研透知识点,只有这样,才能够给学生清晰的思路。
《解方程》 16
这节课,先复习了方程的概念后,马上让学生说说方程需要满足几个条件,让学生意识到方程是一种特殊的未知数,然后出判断题,让学生进一步加深理解方程的意义,并让学生明白等式和方程的区别联系,紧接对有关方程的知识进行梳理,构建网络。并解决实际问题。
本节课的教学目标是结合具体情境,了解方程的含义以及会用方程表示简单情境中的等量关系。在教学的过程中,我设计导学案,先课件出示几个情境图,让学生从生活中的跷跷板引入,看清情境图。让孩子们从中找出数学信息,从而找到等量关系,让孩子用自己的语言进行描述,尝试着列出方程。知道了什么是等式,接着在交流书本的三个情境图,逐渐加大难度。多请几位孩子说说他们找到的等量关系。尝试列出等式。然后观察列出交流,从而知道含有未知数的等式叫方程。做练习进行巩固如何找等量关系,从而列出方程。本节课,我力求让学生通过自主探索,利用生活的例子,让每个学生都有观察、作分析、思考的'机会,提供给学生一个广泛的,自由的活动空间,让学生大胆尝试,探索,感受数学的趣味。学生也都表现得比较积极,通过同桌交流等形式,找出等量关系,列方程时,同学们用不同的方式列出了式子,有些学生可能还受到旧知识的影响,把要求的未知数单独放在了等式一边,当时我虽然告诉孩子们方程不能这样列,但从某些后进生做的练习来看要转变过来还是有些困难,我想,可能是我没能把书本第一个出现天平的情境图讲的还不够透彻,不能真正掌握找出等量关系的方法。整堂课当中,感觉对后进生的关注度不够,如果多加关注,可能可以找出错误资源,然后教师再加以引导,让同学们能更好的快速找出等量关系,更快的列出方程。最后,对自己比较不满意的是,1、学生说的问题与我设想的有出入。2、学生展示的时候不大胆。流程走完了,留给学生的空间太少了。
想让学生有个轻松愉悦的学习氛围,但可能我还需要一些时间,希望以后能上出让学生轻松愉悦的数学课。
《解方程》 17
前两天讲解了简单的方程的解法,加法、减法乘法除法的,觉得孩子们接受的不错,一节课下来练习了好多题,每个孩子都能得心应手,自己还有点窃喜。可是今天却让我大跌眼镜。
昨天上课讲解了例4和例5,孩子们对了复杂的方程有了初步认识,但在每一步的分析之下孩子们也觉得很熟悉,原来是简单的方程结合在一起变成复杂的,只要掌握运算顺序就不难,结合例题的.图示,分彩笔的例子,先分什么再分什么,让学生明白在具体算式中也是结合着实物图来做,先把3x看做一个整体,把剩下的4根彩笔减掉,要想得到一整盒x根的彩笔,就得把3整盒再平均分配,这样下来孩子们能够明白每一步的意思,他们能够知道先处理多余的彩笔,再考虑整盒的彩笔。这样下来理解也不是问题,又练了几道同类的题,也很顺手。例5的讲解上有些难度,孩子始终不太理解把括号看做一个整体,但在讲解和练习下也能做上了。
今天我想验收一下昨天学的怎么样,结果让我很头疼,为什么过了一宿好多同学又没了思绪,留了6道题,少数几个好同学能够顺利的做上,大部分同学还在思索着,课下辅导了几个差生,原来他们又把前面学的简单的方程解法又忘了,自己思考了一下,得给孩子们消化时间,课上会了不代表他们一直不忘,还得多加练习啊
《解方程》 18
教学《解方程》这部分内容时,我一开始就有些担心学生不容易学好。因为方程的思维方式和原来的解决问题思考方式完全不同,而学生已经着惯了原来的思考模式,恐怕很难接受新的方法,即使这种方法的思维含量更少,完全不用拐弯抹角地思考,不用逆向思维。学生对于新的东西,总是因为不熟悉而否定它的简便好用,因为对他们来说用起来不熟练就是不方便的。其次是解方程、验算、用方程解决问题等都需要固定的格式,学生要花时间适应这种格式记住这种格式,并熟练地应用也是一大难点。
在上课时,我是先按照书上例子展开教学。然后我说明,列方程解决问题就是把实际情况最直接地表示出来,比如天平左边是杯子和水,水的质量是x 克,就写100+x ,右边是砝码250 克,左右平衡,用等号连接,列成的方程就是100+x=250 。
接着教学怎么解方程,求出方程的.解。我让学生自己来求x 等于多少,学生都能解决。书上介绍的方法是两边同时减去同一个数,左右两边仍然相等。但是学生的方法都是根据加法算式中各数的关系来求的。即使有些学生说不清自己是用什么方法,我也能看得出来是用这种方法。我肯定了学生的方法,再从天平的原理出发介绍了书上的方法,然后问学生:你们喜欢哪种方法?学生几乎异口同声地肯定了自己的方法。因此,我说,那我们就用自己用得好的方法来求方程中的未知数,。同时, 介绍了使方程左右两边相等的未知数的值叫方程的解,求出方程的解的过程叫解方程。认识了概念后,要及时加以巩固。我出了两道题帮助学生巩固概念。
二是让学生来解方程。学生很快能算出来,我告诉学生解方程的写法跟我们以前的计算写法不同,它有特定的格式,我一边讲解格式一边板书。要求学生读一读解方程的过程,看是否理解,再在自己的本子上写出过程。然后重新做了一道加以巩固。接下来的难点是验算。我先讲解怎么验算,再请学生来说验算过程,然后把验算过程也按照特定格式写下来。
学生作业反馈时,有几个问题:
一、用方程表示题目中的数量关系很多都用老方法;
二、解方程的格式写法容易出错;
三、方程的解的验算过程不是很理解,经常出错。
作业讲评时我们一起纠正了错误,概括了错误类型,要求学生避免这些错误,然而一些学生依然在重复原来的错误。这是数学教学中常有的现象,有些题目第一次用了错误的方法,往往纠正很多次还是着惯用错误的方法。
我反思了自己的教学,也有几点想法:
一、用方程来表示数量关系学生出现困难,是通过我的帮助列出方程,我并没有及时让学生巩固方法。
二、解方程、验算的过程和格式的教学以我的讲解为主,而那时我没有想办法很好的提高学生的注意力,因此学生练着时丢三落四较多。
三、我的讲解过多,学生自己的思考过少,类似于灌输,学生学着较被动,到最后模仿解法和格式为主,却没有理解为什么这样写,因此学生有时正确,有时出错,没有掌握好。
四、这个教学内容对我们的学生来说,难点较多,而我并没有为学生的接受能力进行减负思考,一股脑地把所有新的东西都倒给学生,造成学生超负荷。
《解方程》 19
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的'这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
《解方程》 20
《解方程》这部分内容,是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数思想有着极其重要的作用。
在开课时,通过复习哪些是方程,巩固方程的含义,为后面教学作铺垫。
教学时,我让学生自己说出推想过程,一边板书,一边指出解题的想法,然后着重讲解检验的'方法及书写格式,并在后面的巩固练习当中加入口答检验,根据课本上的“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
在出示概念时,先让学生自学了概念。自学完概念后,应让学生对两概念讲讲自己的理解,自己勾画出重点字,然后才是教师对概念重点的强调,这样更能区分两概念不同的含义,对难点的突破也是一个很好的方法,可以让学生将易混易错的地方,清楚理解后,明确两概念的区别,这点在课上忽略了。
在后面的反馈练习时,因前面例题的格式讲的还不够明确,所以练习时有点反复,但在后面的练习中学生已完全掌握。巩固练习的层次很好,由易到难,对学生的学习有突破,学生完成的正确率也很高。
这节课整体来说我比较满意,对于细节上的处理。在今后的教学中我会更加注意,使教学更加严谨,也会更注意教材的研读,争取上一节完美的好课。
【《解方程》 】相关文章:
解方程的 02-26
《解方程》 05-02
《解方程》的 09-17
《解方程》 04-07
《解方程二》 03-28
数学解方程 04-12
解方程的 15篇03-10
解方程教案04-26
解方程二教案12-10
毕业啦 04-27