近似数
作为一位刚到岗的人民教师,教学是重要的工作之一,借助 我们可以快速提升自己的教学能力,那么优秀的 是什么样的呢?以下是小编精心整理的近似数 ,欢迎阅读与收藏。
近似数 1
通过本课的教学,我意识到以下几点:
1、让学生在生活中体验。
数学源于生活,生活中充满数学,并最终服务于生活。这堂课通过提供生活中的一些数据,例如:班级人数、某市人口总数等一些数据,让学生初步感受这些信息,引入准确数,接着让学生根据自己的生活经验,说说哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数的。从学生找出“大约、达、近”等一些词可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入“近似数”和“≈”,顺理成章,学生非常容易接受。
2、让学生在比较中体验。
比较是常用的一种数学思考方法。通过比较事物之间的相同点和不同点。便于抽取出事物普遍存在的规律、区分出个体独有的`特征。只有经历这样的过程,才能使直观感受到的经验得以提升,进入学习数学化的过程。
教学如何求近似数是本课的一个难点,我通过独立的看一看,自己试一试,小组讨论交流等活动,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律和方法,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。在合作交流的过程中,学生们把自己个性化的想法展示出来,使每个学生都得到不同程度的发展。本课利用数轴,让学生体会多位数所在区域,靠近的整万数,从而掌握求近似数的方法,即四舍五入法。能根据实际问题的需要求一个数的近似数,培养学生的估计意识,发展学生的数感。但是在练习中,求近似数还是出现了不少问题,如精确到万位,有的学生精确到多位数的最高位,如何让学生能比较熟练的找到不同程度的近似数,有何有效的教学方法,是我还在思考的问题。
近似数 2
成功之处:
1.情境化导入,引发学生的兴趣。
教学新知时,利用豆豆身高的近似数来引入:豆豆的身高是0.984 m,三位同学的回答不同,通过说法的不同引出争论。通过引导,让学生在合作交流、自主探究、小组交流中把思维充分暴露出来,加深学生对用四舍五入法求小数的近似数方法的理解。
2.给学生充分展示的机会。
学生理解了保留几位小数的含义:保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……尽量让学生自己说出这些语句,小结后让学生熟读。通过让学生试着把豆豆的身高保留两位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出求一个小数的近似数的'方法。
3.通过质疑,引发思考。
在比较近似数1.0与近似数1谁更精确些时,通过提问,引发学生思考,从而使学生明白近似数末尾的0不能省略的道理,突破难点。这样的设计使学生在真正理解和掌握基本的数学知识与技能、数学思想和方法的同时,获得了广泛的数学活动经验,为学生的全面发展提供了更多的机会。
不足之处:
同学们出现较多的问题是不能准确写出符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练。
再次教学中,要立足于学生的主体发展,引导学生思考,纠正学生错误,通过巩固练习使学生加深对小数不同数位的对应位置的理解,提高做题的正确率。
近似数 3
本课的教学内容属于新课不新,实际上就是把小数乘小数的计算和求小数近似数的知识结合在一起。对于五年级的学生来说问题不大。在教学时,主要采用的是引导学生复习旧知识,然后将两个原来没有联系的知识通过解决例6中的具体问题加以结合,在教学中提出这样的问题:你能用我们学过的知识自己试着解决吗?学生基本上都是利用这些知识解决的。在此基础上组织学生交流:怎样求积的`近似数。在学生们交流的基础上引导他们总结出具体的步骤和方法。接着进行一系列的练习,巩固学生对方法的掌握和熟练程度。从整节课的效果看,学生的掌握应该是不错的。
近似数 4
星期四上午,侨中礼堂再一次听到罗老师的数学课很是欣赏和赞叹。
近似数是我们数学老师最不好把握的课。因为太活了,很多答案都对。罗老师一节课紧扣主题,突破重难点上有很多值得我借鉴的地方。先由华西村引入,孩子们通过数据知道72层是准确数,近5000个座位是近似数。当问到建筑面积是 ( )万平方米,让学生猜一猜:21□□□□,可能是多少万呢?这个题目很新颖很有趣。因为不论孩子们说什么都有可能。老师问:是21万还是22万?学生说看后面的数。老师这时翻开最后面个位上的数是8,学生紧接着说不对,前面的。老师又紧接着翻开十位的`数是3。学生说还不对。到底是哪一位呢?最后确定是千位。老师问:为什么是千位呢?学生说:因为千位是0.1.2.3.4.就是21万,如果是5.6.7.8.9.就是22万。这是顺势引出四舍五入法。孩子们自然而然的记住了要学习的知识。
罗老师的课很灵活。比如学校有3179人,用近似数表示约是( )。孩子们说:3180,3000,3200.多好的答案啊。这些都是对的,而我们在教学时往往把握不好,禁锢孩子的思维太多,结果适得其反。最有意思的一道题是:爸爸的工作单位地址是福州市五四路217号。学生说:五四路200号。呵呵,这回可掉进老师的圈套里了。老师反问:去五四路200号能找到爸爸吗?看来这是不能用近似数表示的。
在解决难点问题上,老师用一锤定价的方式出示宝马汽车的价格约是130万元。谁给的价格最高,但是必须约是130万就得到老师的宝马汽车的礼物。孩子们说出:1304999.真是设计的很巧秒。
整节课时间过得很快。老师的每一个环节,每一句话都是围绕着教学目标,都是在突破和解决教学重点难点。没有一丁点浪费。每一个环节设计都很有趣,孩子们喜欢。最重要的是老师善于启发孩子们自己发现,自己解决实际问题。
近似数 5
四年级上册数学《用“四舍五入”法求近似数》一课的教学内容是在学习将整万数改写成以“万”作单位的数的基础上进行教学,教学难点是能用“四舍五入”法求一个数的近似数,这课的内容的学习将为今后学习省略亿位后面尾数求近似数奠定基础。
(一)让学生充分体验到数学与生活的紧密联系,以激发学习兴趣在新课的开始我提出这样一个问题:“同学们,你们知道我们学校共有多少人口吗?先估计一下吧。”激发学生探究问题的兴趣,让学生利用生活经验认识近似数,再通过班级人数这样一个准确的数字与近似数对比,进一步增进学生对近似数的理解,认识到生活中常用近似数表示数的必要性,从而激发学生的学习兴趣。
(二)利用迁移、类推方法获取新知,沟通新旧知识联系。
在学生已有知识经验中,学生对于四舍五入法并不感到陌生,已经知道小于5就舍去,大于5或等于5就向前一位进1,但是不能完整给予表述,而这节课的内容实际上就是让学生明确四舍五入法的具体含义,并根据具体的要求利用四舍五入法来求近似数。在这节课中四舍五入法并不是教学的难点,难点在于理解“省略万后面的尾数”这个具体要求上,这是因为以往经验没有涉及“尾数”的概念,所以学生会产生理解上的不足。因此我在教学中,我通过复习求万以内的近似数引入,让学生回忆“四舍五入”的意义,
三年级时已经学习过省略百(或十)位后面的数或者是估算整百(或十)数,所以我就先让学生试着完成以下几个复习题:
574(省略十位后的尾数求近似数)782(省略百位后的.尾数求近似数) 2659(省略千位后的尾数求近似数)让学生复习万以内的数的求近似数的方法:省略到哪一位就看它的下一位,然后用四舍五入法,如果下一位不满5就舍去,改写成0,如果下一位满5就要向前一位进“1”,再把尾数舍去,改写成0,求出近似数。为接下来的求亿以内数的近似数打好基础。
接着让学生观察例7,指名读题,理解“大约是多少万千米”,让学生理解:其实就是省略这个数万位后面的尾数求近似数,再让学生试着独立解答并板演。在学生板演过程中,让学生说说自已是怎么想的?说出:省略万位后的尾数,只要看千位上的数,然后根据“四舍五入”法求出近似数。又引导学生结合上一课所学知识将求出的整万近似数改写成以“万”作单位的数,并让学生思考理解为何前面是“≈”而后面是用“=”:因为第一步求出的是近似数,要用“≈”,而后面是直接把这个近似数改写成用“万’作单位,没有改就变它的大小,所以要用“=”。
最后通过13页的“做一做”的练习加强巩固,在这题中分别是省略百位、千位和万位后的尾数求近似数,共把学生平均分成三组,让学生进一步理解:省略到哪一位就看它的下一位,然后用四舍五入法,如果下一位不满5就舍去,改写成0,如果下一位满5就要向前一位进“1”,再把尾数舍去,改写成0,求出近似数。
这节课,因为利用了新旧知识的迁移,类推,学生对省略万位后的尾数这个方法掌握起来还是很轻松的,不足之处是让学生说得太少了,要让学生多说说为什么是这样求的,根据是什么,这样对于学生理解四舍五入法会更有帮助,今后还要加以改进。
近似数 6
教学目标:
1.结合豆豆测量身高这一现实情境使学生知道求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。
2.能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
教学重点:求小数的近似数的方法。
教学难点:理解表示近似数时,小数末尾的0不能去掉。
根据学习目标,结合课本内容,我制定了两个学习任务:
1.探究求小数近似数的方法。
2.比较理解近似数1和1.0。
下面就整个教学过程的设计进行简单的分析:
在激情导课环节,我先创设菜场买菜付钱情境,又结合课本的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。然后回忆整数的近似数方法,为学习新知做铺垫。
在民主导学环节,任务一是让学生探究求小数近似数的方法。学生先自学,然后在小组内交流学懂的知识。最后运用学会的方法解决问题。进行展示时,主要依靠小组,组间交流互动。让学生总结出求近似数的方法。当学生还有表达不完整的时候,我再进行补充小结。在这里,我主要强调“精确”到某一位的另一种表达方式,即省略这一位后面的尾数。以帮助学生进一步理解求近似数的方法。关于近似数末尾的0为什么不能去掉,为了帮助学生理解这个问题,突破本节课的难点,我设计了任务二比较理解。
. ≈1 ( )
. ≈1.0( )
1.思考有几种填法。把能填的数写在后面的括号里。
2.小组同学说一说近似数1和1.0的不同之处。
在学生展示交流完毕,我又出示了数轴图,目的是让学生直观的感受到近似数1和1.0意义的.不同,精确程度的不同,1.0比1更精确。由此得出“表示近似数时,小数末尾的0不能去掉”。
在检测导结环节我采用了课堂检测单,检测题围绕学习目标,检测学生对当堂知识的理解。第二题是结合生活实际提出,目的是再次让学生感受到生活中的数学,培养学生做一个生活的有心人,知识的发现者。
在进行小组交流时,由于一开始没有调动起学生的积极性,课堂显得有点沉闷。可是在后面的学习中,学生逐渐的打开了思路,积极主动的参与到学习中来。不但自主探索到求近似数的方法,而且理解了为什么表示近似数时末尾的0不能去掉。可以说两个任务的呈现都比较合理,有可操作性,引导学生完成学习目标的方向非常明确。任务二的呈现稍显难度,但这也是这堂课的亮点。采用数形结合的方法,为学生直观的理解知识搭建了合理的平台。
在以后的教学中,我觉得应该在钻研教材方面下大功夫,只有这样才能更好的用教材,呈现合理的学习任务。对学生学习方法的培养也是课堂教学的重要任务,我们一定要努力处处为学生着想,时时为学生服务,课课让学生精彩!
近似数 7
在教学第七册数学课本“近似数”一课中,有一道带星号的题是这样的“9□8765000≈10亿,方框里可以填哪些数时,这个数的近似数于10亿?”教学这一练习题时,我先让学生独立练习,要求学生也可以进行进行合作讨论,然后交流。结果,学生经过交流后,展示了两种结果:一种是方框里可以填大于或等于5的数;另一种是方框里可以填5、6、7、8、9。我立即追问学生:“这两种填法一样吗?”话音刚落,学生顿时激烈争论起来。有的学生说一样,而有的学生坚决认为不一样,并且列举出比5大的数还有10、11、12……,我顺着学生的思路不断地往下板书,一直写到二十几,然后甩甩手臂,装出手很酸的样子,问:“写完了没有,我的手都写酸了。”学生马上说“写不完,写不完,比5大的数有许多个。”我马上接着说:“写也写不完的数在数学上有无数个”。这时我又问学生:“这两种填法一样吗?”学生坚决而果断地说:“不一样,填5、6、7、8、9是正确的”。
在完成第二道星号题9□8765000≈9亿时,就更有趣了。当我提出方框里可以填哪些数时,有的.学生说:“填比5小的数,只能填4、3、2、1、0”。这时有位学生神气活现地说:“还有-1、-2、-3、2.1、3.7等比5小的数,所以方框里填比5小的数是不正确的”。这位同学的回答超过了当前我们所学的整数范围内的数。看着这些聪明而又可爱的学生,我不由自主地赞叹:“你们太棒了,真了不起,能找到哪么多比5小的数”。这时我问学生比5小的数究竟有多少个时,同学们顿时异口同声地说:“比5小的数也有无数个”。“方框里应该填哪些数,同学们现在知道吗?。学生自信地回答:”方框里应填比5小的自然数都是正确的“。
通过这堂练习课,使我深深地反思到:学生的思维不再是一张白纸,新课程注重培养学生学习的兴趣与愿望,把学习的主动权交给学生,让学生更多地参与教学活动,在主动积极的心境下获取知识和发展能力。对学生思维方法的教学法,不能仅靠简单的告知。数学教学最本质也是最显著的特点在于,它所传输的信息不仅仅是数学活动忍气吞声结果----数学知识,还应包括数学思维活动的过程,在教学中教师应该让学生经历一次次数学思维的活动过程。对学生来说,无论是构建一种新的数学知识,还是掌握新的数学思维方法,必须让学生经历数学思维的活动过程,才能让学生的思维有感性认识上升到理性认识。
近似数 8
去年也是这个时候教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没教的过于简单,高估了孩子的学习水平;二是又感觉不会很难,不就是用个“四舍五入法”求一个数的近似数么?导致自己的备课与学生的实际情况有些脱离,所以交上来的作业,可想而知,学生出现的错误直接告诉自己没有上好这一节内容。自我认为很是简单,教材也是安排一个课时结束新知,可实际不然。所以今天在教学这个内容时,把事速度放慢了许多,也打算用2个课时来完成。与其快速没有效果的完成,还不如让学生掌握牢固多用一个课时来消化。
今天放慢了速度,所以在课堂上出现了一些问题,而这些问题也正是让我明白学生对于求一个数的近似数的真实情况,以免后面会忘记,所以特记下来,以备下次之需,同时也改进自己的教学。
问题一:学生明白“四舍五入法”,不明白的是怎么用这个方法。
在讲解完“四舍五入法”时,学生通过其他人的理解和老师的引导,能够接受‘满五要也向前一位进一,不满五就要舍’的道理。但是真正用的时候,他们还是不理解。例如教材中安排了“233184人约等于20万人,说说你是怎么得到的?”有些孩子一下子就明白了,“四舍五入到十万位,就看万位是不是比5大?”;可在今天的课堂中仍然有一些孩子提出自己的“质疑”:那8不是比5大吗?为什么不是“进一”,而是“舍掉”。从这些孩子的理解上出了问题。课堂上没有直接消除他们的疑问,而是由两个孩子说了自己的看法。A说,8在十位上,表示八十,对20万是根本不受影响的。B说,就算是五入,8向前进一位,那也只能说百位上变成,然后不能再继续向前进一位了。C说“233184”在数线上离20万更近,所以约等于20万;其实三个孩子的说法都有一定的理由,同时孩子能在较短的时间内进解述自己的看法,已经是非常了不起。于是在孩子们的想法上,我把“四舍五入”的方法进行了讲解,可还是有一部分人不明白什么“四舍五入到十万”。所以要让学生掌握到关键:四舍五入到哪一位,再看这一位的下一位……。
问题二:15000约等于多少?
教材为了让学生理解近似数更接近于哪一个精确的.数,安排了一个直观的“数线找位置”的方法,再观察与哪个更接近,再约等于哪个数。这个方法很好,非常直观。课堂当中有一位男生对18000接近于20000,理解就非常好。这个孩子告诉大家,在数线上,先找到15000,如果比15000大一些就近2万,如果比15000小一些就近约等于1万。其实就可以说是直观的“四舍五入法”了。但是有人就提出疑问,那如果正好在中间,15000又是近似哪一个数。
今天这节课虽然没有按照教材的安排一个课时完成,但课堂中学生提出的疑惑让人很是开心。这些暴露在学生中的问题,既是今后在备课教学所需要注意的,也是能看出学生在课堂中有善于思考,学会提出问题。这应该也是课堂中的一个较大的收获。
近似数 9
《用四舍五入法把数改写成用“万”作单位的数》,这节课并不简单。学生既要学会四舍五入法,又要学会用四舍五入法对数进行改写,而且还并非仅仅是课题中所写的改写成以“万”作单位的数,还需要根据要求改写成以“千”、“百”等作单位的数。而教材的编排意图显然是充分利用学生前面学过的把整万的数改写成“万”作单位的数的经验,力图让学生经历先把一个大数用四舍五入法省略万后面的尾数求出近似的整万数,再改写成用“万”作单位的数的过程。显然,前面的过程是关键。而四舍五入法,四舍比较简单,难的是五入。
从课堂反应及学生的作业批改来看,学生对这一课的掌握情况很不好,出现了一些问题。如:反思学生出现的问题,我觉得是因为我的教学不够严谨、细致,才导致问题的面这么多而广。
原因一、 没有激发部分学生的兴趣
原因二、 上课内容比较抽象,后进生难以理解,故此没能投入学习互动中来。
改进后,二次教学设计。
汽车价格是193500元,558800,( ),( )
理清几个概念。
1、什么叫尾数?1389567万位(千位、百位)后面的尾数分别是什么?
2、“省略”是什么意思?是像语文里讲的一样直接省略不写吗?(区别语数中“省略”一词概念的不同)
3、那么,什么情况下直接舍去尾数,什么情况下要向前一位进1呢?关键看哪一位?
4、辩证思考:193500为什么不看成20万?558800为什么不看成55万?
5、拓展:怎么改变这个价格,使它能约等于55万?
预设:生1“千位上改成4、3、2、1、0”,师追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
生2:万位上改成4,千位上改成5、6、7、8、9。
师板书各情况,并追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”
小结:约等于55万的数,最大的是四舍得到的554999,最小的是五入得到的545000。
6、完成作业本第6页第5题。
7、完成练习二。
一步一步地使学生明白“把12756省略万位后面的尾数求近似数,就是把1后面的尾数都去掉,并写0占位,写成10000,但是题目要的'是“万”做单位,所以还要把10000改写成1万。这样就使得学生对求近似数的每一步的用意都有一个清楚的认识。
通过这节课的反思,我认识到教学一定要顺应学生的认知特点和过程来进行,每一步的设计一定要从学生的角度来思考,从教学的重难点来分析。那种“填鸭式”的教学方式,不仅苦的是学生,害的是学生,其实受害最大是老师,因为课后你得利用更多的时间来辅导那些知识上有缺漏的学生。
近似数 10
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
1.从生活出发,让学生感受数学与实际的联系
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
2.注重过程,让学生在探索中学习
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的`近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
近似数 11
生活中我们经常会用到四舍五入法去求一个数的近似数,而在讲授这节课的新授知识前,我先组织学生在各种媒体上搜集一些数据,并说出这些数据的实际意义,体会使用这些近似数的意义,感受近似数与实际值之间的偏差
。本节课我着中强调了“四舍五入”取近似值的`方法:“四舍五入法”就是指把要处理的数的某一位以后的数字舍去后,如果被舍去部分的首位数字小于五,保留部分不变,这就是我们所谓的“四舍”,如果被舍去的部分的首位数字大于或等于五,就在保留部分的最后一位加上一,这就是我们所说的“五入”。讲这个部分时,我引导学生明确取近似值到某一位时,只要看它后一位的数字,再用“四舍五入”即可,换另一种说法,只要根据要省略的尾数的最高位来考虑就可以了,不要管尾数的后几位是多少。
在教学过程中也出现了不少生成性的问题是之前没有考虑到的,学生对于“四舍五入”仍然比较陌生,对于四舍五入到哪一位这种说法没有真正的理解,搞不清楚省略的尾数要从哪位开始,在进不进一的问题上也出现了混乱,在以后的练习课上要着重对这些问题进行强调和练习,让学生能够结合学习的知识,将一些数据先变成近似数,再改写成以万以亿为单位的数。
近似数 12
《义务教程标准》指出:学生的数学学习应当是现实的、有意义的、富有挑战性的,学习内容要有利于学生主动进行观察、实验、猜测、验证、推理与交流等数学活动。可见,学生低层次的模仿是不易建立起解决问题的数学模型的,更难以品味出数学思考的韵味和乐趣。因此,本节课在对近似数的教学上,通过实例直接告诉学生什么近似数的含义,让学生知道近似数的和精确数的区别,通过练习找近似数、找生活中运用近似数的例子,进一步加深对近似数的理解。
在学习用四舍五入法求近似数时,没有直接告诉学生什么是四舍五入法,怎样采用四舍五入法,而是给出学习的素材,让学生有足够的空间自己质疑,引发学生的'探究心理,在足够的空间和时间范围内,小组学习合作,通过观察,交流讨论、比较探究得出四舍五入的方法,建立了解决此类问题的数学模型。
学生学得积极主动,兴趣盎然,教师以组织者、引导者的身份参与其中,师生共同分享学习的成功和喜悦。
近似数 13
《商的近似数》这一课的教学重点是如何根据需要保留一定的小数位数。
出于上面的'思考,我设计一些问题让学生独立思考、探索求商的近似数的方法以完成这一课的学习。
在例题7的教学中,提出:“19.4/12计算时需要一直除完吗?”让学生带着问题试着做一做,经历了独立的计算与思考后,学生发现问题关键:计算只需要除到小数部分第二位。学生顺利掌握了保留一位小数求商近似数的方法。保留两位小数求商近似数的方法,学生知识类推自然地就会。最后小结求商的近似数的方法,当然也是水到渠成,整节课自然流畅。
近似数 14
四年级数学上册《近似数》 在先求近似数再改写这一课中,学生已经在三年级学过估算,能够熟练的对一个数保留整十或整百的数,但是学生表现出来一个问题是,当问题是省略万位以后的数是多少或者保留整万位,学生会做。当问题是四舍五入到万位时,学生就不知道怎么做了,很多学生都做错。原来学习的保留整十或整百,保留的都是最高位,现在让保留的不是最高位时,学生会在最高位再保留一次,导致出现错误。这种情况出现的不多,课堂上没有认真听讲。
学生刚从三年级进入到四年级,所学习的知识在加深,但是学生的思想还没有及时转变过来,过多的沉浸在三年级的学习经验中,会对四年级的学习造成一定的影响,我在上课时要想办法扭转这种现状。在知识的`学习中既要注重学生原有知识的应用,还要关注新知识的学习,让新知识在旧知识的基础上衍生出来,学生学起来会更容易,记得牢固。
近似数 15
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
成功之处:
1、复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2、联系生活实际,体会数学与生活的联系。结合主题图,创设了同学们测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把盛维维的身高1.584米精确到分米、厘米。这样把学习求一个小数的近似数的知识还原与生活,应用与生活。
3、深刻体会保留保留几位小数的.含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到个位。
4、重点比较,保留整数的1和保留一位小数1.0的区别。通过在数轴上的取值范围,使学生体会到保留整数1的取值范围在0.5~1.4,保留一位小数的1.0的取值范围在0.95~1.04,保留整数的1和保留一位小数1.0虽然大小相等,但是精确度不一样,保留的小数位数越多,就越接近准确值,也就更精确。
不足之处:
1、 练习时间有点少。
2、 个别辅导不够。
【近似数 】相关文章:
《近似数》 03-26
《小数的近似数》 03-08
商的近似数 11-05
小数的近似数 03-20
《积的近似数》 11-03
积的近似数 06-25
《商的近似数》 05-01
求商的近似数 05-02
商的近似数的 11-29