首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >分数除法的

分数除法的

时间:2022-07-19 16:41:39 我要投稿

分数除法的 15篇

  作为一位刚到岗的人民教师,我们需要很强的教学能力,通过 可以有效提升自己的课堂经验, 应该怎么写才好呢?以下是小编收集整理的分数除法的 ,仅供参考,欢迎大家阅读。

分数除法的
15篇

分数除法的 1

  一、问题展示:

  在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:

  1、在除号与除数的同步变化中,学生忘记将除号变成乘号。

  2、在除数变成其倒数的`时候,学生误将被除数也变成了倒数。

  3、计算时约分的没有及时约分,导致答案不准确。

  二、原因分析

  为什么会形成这些错误现象,通过对比分析,可能有一下原因:

  1、教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。

  2、学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。

  三、解决办法

  1、增加学生板演的机会,

  2、课堂上,对于关键性的词语,要求学生齐读,用以加深印象。

  3、辅差工作要求学生以同位为单位,进行个别辅导。

分数除法的 2

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的是“现价”,有的.填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

分数除法的 3

  人教版六年级上册第三单元“分数除法应用题”的教学是本册的一个教学重点和难点。很多老师都深感在此处和学生说不清,教学效果不佳。我个人通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下我的一些比较成功的做法。

  一、加强前后知识之间的联系,实现知识的正迁移。

  要想第三单元学生学的顺利,第二单元知识的学习一定要铺垫好。

  一是,一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。

  二是,能快速地根据题中的关键句判断出谁是单位“1”。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“1”的方法:是“谁”几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“1”。最简单的方法是:分率前面的量就是单位“1”。

  三是,学生要熟练掌握画线段图的方法。比如要先画单位“1”(因为单位“1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。

  四是,能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。

  例:“柳树是杨树的 ”等量关系式:杨树× =柳树

  “柳树比杨树多 ”等量关系式:杨树+杨树× =柳树 或者 杨树×(1+ )=柳树 这样学生在学习用方程解决分数除法应用题时“找等量关系式”就轻松多了。

  二、教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。

  比如教学第三单元分数除法“解决问题”例1的时候,就要复习一下学生学习第二单元分数乘法“解决问题”例1的.知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例2时,就要对应复习第二单元乘法解决问题例2和例3的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。

  三、在教师的引导下提高学生读题、分析题的能力。

  刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的,想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多 是多“谁”的 ?(多杨树的 )④到底多多少,具体的量怎么算?(杨树× )⑤这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)

  当然,还有一种等量关系式:杨树×(1+ )=柳树 可由以下几个问题入手:①柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )②即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。

  学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。

  总之,我通过运用以上的教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。

分数除法的 4

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。

  这节课的内容还是比较简单的。如果单纯的教学它们的`关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。

  在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。

  生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。

  生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。

  让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。

  在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

分数除法的 5

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1。以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的'知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2。分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

  1。提供丰富的素材,经历“数学化”过程。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  2。问题寓于方法,内容承载思想。

  数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

  就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

分数除法的 6

  本节课的教学着重让学生在以下几方面理解:

  1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。

  2、一个分数,不但可以从分数的.意义上理解,也可以从分数...

  本节课的教学着重让学生在以下几方面理解:

  1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。

  2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。

  3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:

  分数、除法关系妙,记忆方法有诀窍。

  两数相除分数表, 弄清位置很重要。

  除号相当分数线,分子、分母两数担。

  位置顺序不能调,相互关系要记牢。

分数除法的 7

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的'成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

分数除法的 8

  理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的`思维能力,教学效果显著。

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

分数除法的 9

  个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。

  教学目标我是这样定位的:

  1。 通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。

  2。 在合作探究的过程中,提高迁移类推、分析比较的综合能力。

  3。 获得成功的体验,认同数学在生活中应用的广泛性。

  在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的.,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。

  总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。

  对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。

分数除法的 10

  教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。

  下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的.办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

分数除法的 11

  对于分数乘除法应用题,学生刚刚学完感到很乱,很难!

  其实不然,我们都知道这部分知识是有规律可循的,只是学生一一学完之后就乱了,混了,针对这种情况,我把分数乘除法的所有类型全部给出了一组对比练习,内容一样,只是单位“1”不同,经过这样6组的对比练习,学生就很容易发现以前讲的规律的实用性了,进而使他记住这个规律,这一节课下来,大多数的同学都能掌握方法,但在实际应用的过程中,总是不按照讲的方法去思考,特别是后进生,你讲的全能听懂,做题多数不会,你引导这问他就会了,这就说明学生没有良好的学习习惯,不把老师归纳的'知识往心里记。

  还有一个问题就是计算不准的现象特别严重。列式正确,计算错误的同学不止一两个。所以在今后的教学中,要不断的给他们总结方法,也让他们养成总结规律方法的好习惯,并把计算的训练常抓不懈。

分数除法的 12

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的'生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

分数除法的 13

  这节课是分数除法教学的起绐课。分数除法的意义及计算方法是本单元的重要内容,也是学生理解的困难之处。我是想作为分数除法的第一个知识点,利用折一折,算一算等活动,让学生在实际操作中借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。分数除以整数是学生学习了分数乘法和认识了倒数的基础上进行的,学生之前已掌握了分数乘分数的计算方法,为本节课的新知学习起到了良好的铺垫作用。

  在教学中注重以下几点。

  1、 强调知识的迁移和类推。

  在教学中,先复习整数除法意义再进行分数除法意义的教学,可以使学生利用知识的迁移和类推很容易得出分数除法的'意义。

  2、 以自主探索为主。

  提供给学生自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同算法,尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中,进一步明确算理。

  一节有效的课堂应该建立在有效的小组合作上,整节课下来我发现在小组合作方面我还应多钻研,如何调动小组的积极性?如何让小组的每一位成员都乐于参与其中?将是我接下来主要的研究方向,真正做到合作、交流、共同探究!

分数除法的 14

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的`是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

  以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。

分数除法的 15

  本节课含两部分内容。第一部分内容是分数除法的意义。第二部分是分数除以整数的计算方法。

  在教学第二单元分数的乘法时,出现学生对分数乘法的意义理解不够,所以,在进行分数除法的意义教学时,没有匆匆带过,或直接告诉学生,而是由整数除法的意义引入,再引导学生通过改编成一组分数除法题,让学生观察、推理出分数除法的意义。我留给学生时间去做,但还是有部分学生不得其要领。

  第二部分内容通过例2引导学生用折纸的方法得出两种不同计算方法,再比较、归纳出分数除以整数(0除外)等于分数乘整数的倒数。这部分内容是教学的`重点也是难点,所以动手操作是必要的。因为学生的动手操作能力较差,所以学生动手操作的时间花的比较多。大部分学生能理解为什么分数除以整数就是乘这个整数的倒数。但后面的练习就没有时间做了,所以,不值的学生掌握的怎么样,是否能熟练的计算分数除以整数。

  心有多大,舞台就有多大,所以不要拘束孩子,也不要拘束自己。

【分数除法的 】相关文章:

分数除法的 04-24

《分数与除法》 05-19

《分数除法》 01-15

《分数除法》 05-15

分数除法 05-14

分数与除法 06-15

《分数与除法》 05-08

《分数与除法的关系》 04-21

《分数除法(一)》 05-14

分数除法二 03-02

Baidu
map