五年级方程
身为一名人民教师,我们要在课堂教学中快速成长,通过 可以很好地改正讲课缺点,那么大家知道正规的 怎么写吗?下面是小编精心整理的五年级方程 ,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级方程 1
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的.情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
五年级方程 2
《认识方程》是学生学习代数初步知识的开始。教材运用丰富的问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义。
《认识方程》是在学生学会用字母表示数的基础上进行教学的。通过本课的教学,要使学生了解方程的含义,会用方程表示简单的数量关系。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。
介于以上认识我对本课进行了一些设计,通过教学感觉比较成功的有以下几点做法。
一、“巩固复习,铺垫新知”这一部分通过填空和分类,让学生了解“等式、不等式、代数式”等概念,为后面区分方程和等式做一个铺垫。
1、填空:3.6+2.1○7.7-21.6×5○5×1.638.4×0.2○38.45.9÷0.1○5.9
t与8的和:b除42的商:
2、进行分类,出示名称(等式、不等式、代数式)
二、在认识方程之前就让学生辨认方程,了解学生对方程的认识程度,也激发学生学习方程的'欲望。(你们能判断哪些是方程吗?
① 6+x=14② 3×42=126③ 60 +23 ﹥ 70④ 8+x
学生有争议没有关系,带着疑问学习新知。师:“到底谁说的对呢?让我们一起去找答案吧!”)
三、列方程最困难的就是找出等量关系式,为了让学生能较好的掌握等量关系,在教学三个例题中我都按照一个步骤去引导学生解决这类问题。(1)先找数量之间的等量关系。(2)用字母表示未知数。(3)列出方程
四、注意了细节的引导。例如未知数不要单独放一边;未知数最好放在左边,便于计算;等式与方程的关系等等。这些内容在新课中一一解决,学生掌握较好。
当然一节课总有不足的地方,这节课也不例外。比如方程的概念的出示就比较死板,其实当学生说到哪里我就应该顺势逐步完善概念,不一定非要在预定的时候出现,应该更灵活一些。
五年级方程 3
本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的`解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。
1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!
2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。
3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.
五年级方程 4
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的`关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
五年级方程 5
方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。
五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:
旧教材:
x+48=127
x=127-48
依据运算之间的关系:一个加数等于和减另一个加数。
新教材:
x+48=127
x+48-48=127-48
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。
可是,当学到用方程解决实际问题时,却出现了状况。
新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。
如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。
我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的`难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。
如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”
合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。
如此一来,学生怎么能充分体会方程顺向思维的优越性?
如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?
我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。
五年级方程 6
小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的'整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。 通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:
1、教材的编排上,整体难度下降,有意避开了,形如:45—X=23 56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。
总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。
五年级方程 7
本节课的教学重点和难点是:
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?
学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。 另外我还要求学生掌握加、减、乘、除法各部分之间的.关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。
五年级方程 8
本课是以天平为形象支撑,结合了具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。
由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3 + 2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3 + 2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的'基础。
方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20 - 12 = x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。
五年级方程 9
现在的小学数学教材十分注意将数学知识与生活实际紧密联系。内容的呈现注意体现儿童的已有经验和兴趣特点,提供丰富的与儿童生活背景有关的素材。如人教版小学数学五年级上册60页,关于警戒水位的问题。
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解方程解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。
教学例3时,我首先从例题上引导学生读题观察,理解题意,然后指导学生分析题中的'数量关系。这时问题产生了,由于这里学生的认知局限性,学生对于什么是湖、大坝,甚至水库,堤坝都不知道是什么,给审题带来比较大的困难,又要重新向学生介绍有关湖泊、水库、堤坝等知识,最后为了让学生更好地理解,我还结合学生常见的鱼塘、塘堤等学生熟悉的情境进行说明,学生才恍然大悟,( )由此可见,我们提供给学生的情境必须是学生真正熟悉的生活情境,要结合当地学生的认识水平,这才是有效的情境。其次备课一定要深入,不仅要熟悉教材内容、教法、学法,还要深入分析学生已有的知识情况,这样才能备好一节课,要吸取教训。
在交流汇报时,学生说出了如下数量关系:
警戒水位+超出部分=今日水位
今日水位—警戒水位=超出部分
今日水位—超出部分=警戒水位
然后让学生依据数量关系列出相应的方程,这时学生发现例题与之前所学的方程有所不同,之前列方程时题目中未知数已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到:要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x”的必要性,不至于出现在列方程时不写“解:设……”的情况。
但是,在列方程的时候却出现了这样的问题,因为教材只要求掌握“未知数不是减数和除数的方程”解法,在例题教学中,有的学生列出了这样的方程:14.4—x=0.64,从意义上来说,这样的方程肯定是没有问题的,但是应该怎样解呢?是否该向学生讲解方法?如果讲解方法,又该用什么方法来解?或是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的信息:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就和现在冲突了吗?迷惑!
五年级方程 10
长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。
猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的.基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。
任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。
学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。
练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。
五年级方程 11
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的'直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、自主操作,提高能力,激发兴趣
在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。
三、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。
五年级方程 12
新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,在小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立。从学生的学习上来看,我觉得学生是比较容易接受这种方法的,特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,因此本节课把握好教学目标是关键,
其目标有三:
1.结合现实情景了解方程的意义,
2.会用方程表示简单的等量关系,
3.感受数学的应用价值。本节课内容新,知识抽象,练习多,因此要精讲,才能完成教学目标。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的.格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的.时候,我先让学生复习,巩固找出题目中等量关系式的本领和方法,并且让他们学会举一反三,这点相当重要。还有一点需特别注意学生列出的方程,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,我觉得如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
在练习中,我把练习的重点放在找准数量关系式上。课堂上大量提问了学生应用题的数量关系式是什么,进一步进行了专项训练,在进行列方程解应用题时,重点让学困生再说说关键句是什么,是根据哪句话找出来的,(让学生找关键句)要让他们知道怎样去找,从而总结找相等的数量关系可以有这样几种策略:
①根据关键句思考等量关系。
②根据公式思考等量关系。
③根据总数思考等量关系。
④根据相差数思考等量关系。
五年级方程 13
这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的`性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。
一、让学生在操作中发现
课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出 50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。
二、让学生在发现中操作
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。
五年级方程 14
教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的.方法来解答例1,最后老师让学生
把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
五年级方程 15
这节课是在五年级学生刚刚经历了等式的性质的学习和解简单的方程的基础上进行的,本节的重点是:如何分析实际问题中的数量关系和综合运用方程知识解决实际问题。难点是:找到题目中未知量与已知量之间的数量关系、等量关系,掌握形如ax+b=c,ax-b=c的方程的解法。
我校的五年级学生基础知识非常扎实,不仅能熟练地解决已学的一步计算的简单方程,而且,根据课堂上练习时的观察,一半的学生在新授之前已经掌握了ax+b=c,ax-b=c的解法。从课堂发言看,这些学生并不是运用等式的性质来解方程,有的班级学生学会了移项的方法解题,有的是根据等式中各个量间的关系来解方程,比如2x-22=64,部分学生把2x看作被减数,运用被减数=减数+差的关系式得出2x=64+22后,轻松解答方程。可见不少班级老师已经在教学时拓展了更复杂的方程的解法。再经过共同学习后学生已经熟练地掌握形如ax+b=c,ax-b=c的方程的解法。但找到题目中未知量与已知量之间的数量关系、等量关系仍然是学生学习的难点,许多学生能顺利列出方程但是对等量关系式却表达不清,这种现象在历年的教学中均有体现。
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验。在例1教学时,学生找等量关系的时候还是比较困难,究其原因,大多是直接把大雁塔和小雁塔的高度比较,而没有和小雁塔高度的2倍去比较。等量关系犹如解题的拐杖,一定要让学生认真阅读,仔细分析。这就需要教师恰当地引导。
一、抓住关键句提高学生的.分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:大雁塔的高度比小雁塔高度的2倍少22米,根据这句话学生的思维就会直觉的写出这样的相等关系:大雁塔的高度=小雁塔的高度 2-22。(学生的表现也验证了这是学生最容易想到的数量关系式。)再引导学生找出已知量与未知量,根据等量关系式列出方程。 通过学习和思考,学生就会很快掌握类似这样的一个数比另一个数的几倍多几(或少几)的实际问题,就会根据自己的理解和直觉思考 一个数=另一个数倍数几这种相等关系,。因此学生如果学会抓住关键句分析与思考, 能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二、重视互动交流,提高学生表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、分析关键句、交流关键句等手段,提高学生的思维能力,让学生在学习的过程中关注他人的方法和过程,理解他人的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,还应指导学生通过互帮互学,在交流中促进学生思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,互相促进,共同提高。 (教学本课后,我还有一个想法:在例2的教学中将引导学生通过画线段图来理解数量之间的等量关系。那能否在例1教学中也灵活运用这样的方法呢?我想一定能促进对学生对数量关系的分析。今后将在教学实践中试行。)
总之,教学此单元内容时在学生的数量关系的分析上还要多花时间,多帮助学生,磨刀不误砍柴功,为了能让学生顺利掌握新知,要始终把数量关系式的训练作为教学的主线贯穿在教学过程中
【五年级方程 】相关文章:
《方程》 03-09
《方程》 01-23
解方程的 02-26
方程意义 02-17
方程的意义 03-10
《解方程》 03-13
《式与方程》 03-18
《方程的意义》 03-22
简易方程 10-06