三角形的面积 (15篇)
作为一位优秀的老师,课堂教学是重要的工作之一,借助 我们可以学习到很多讲课技巧,那么优秀的 是什么样的呢?以下是小编为大家整理的三角形的面积 ,供大家参考借鉴,希望可以帮助到有需要的朋友。
三角形的面积 1
“三角形的面积”一课是建立在长方形面积计算的基础上的,重点是推导三角形的面积计算公式。依据儿童“从直观的动作思维到具体的形象思维,最后达到抽象的逻辑思维”的认知规律,所引入生活中的数学问题,通过学生操作学具,把动手操作、动脑思考、动口表达结合起来,在操作中使“操作”与“思维”紧密结合,从而提高逻辑思维能力。
在课堂教学中,我让学生回忆平行四边形、正方形、长方形的面积计算公式,并将手中的一个平行四边形沿对角线剪开,使其成为两个完全一样的三角形,然后让学生猜测三角形的面积计算公式,在学生猜测的基础上教师顺势利导,三角形的面积是真的是平行四边形面积的一半吗?三角形与平行四边形之间有什么联系呢?今天我们就一起来研究。
紧接着我引导学生拿出事先准备好的一组完全一样的三角形进行小组操作,并让学生在操作中解决相关的问题:
(1)任意两个三角形都能拼成一个平行四边形吗?
(2)拼成的平行四边形与原三角形的底和高有什么关系?
(3)任意一个三角形的面积都可以用s= a × h ÷ 2来计算吗?你是怎么想的?
学生在操作和交流中度过,在这个过程里,学生明白了并不是所有的三角形都可以拼成平行四边形,而必须是完全一样的两个三角形才可以拼成一个平行四边形,平行四边形与三角形之间是等底等高的,面积刚好相差一半,也就是等底等高的三角形面积是平行四边形面积的一半。学生在操作中深切的体会到了两者之间的关系,从猜测到操作,从操作中发现并验证了三角形面积计算公式,学生充分体验到了成功带来的愉悦,极大的激发了学生学习数学的`积极性,并近一步培养了学生从小养成从猜测到验证的良好学习习惯。
这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经作到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此,本课的总结
中我应该点出:这样的思考方法在数学上叫做转化。当我们遇到一个新问题时,就可以动脑筋把它转化成我们以前学过的旧知识。这样就起到了“画龙点睛”的作用,可惜我疏忽了。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。
三角形的面积 2
在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的知识结构中去。
具体做法如下:
1、 这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的`痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,也就没有了学生的创新和实践。因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。
3、实现合作互动:这节课一系列活动的设计给了学生充足的用眼看、用耳听、用嘴说、用脑想的时间和空间,让学生尽情地表现、发展自己,充分体现了教师指导者、合作者的作用。我提供了多次学生交流的机会,学生们可通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
不足之处:
例如:在第二次操作活动中,参与面不够广,部分学生手中拿着两个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
三角形的面积 3
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深。
1、符合新课改理念,突出了学生的发展,合理设计教学流程
以前的教学只是注重学生的双基训练,不重视知识的生成过程,而这节课的所有设计都围绕学生的'思维,学生的分析问题能力,整节课体现学生主动参与、乐于探究、勤于动手,培养了学生获取新知识的能力,分析问题和解决问题的能力,以及交流与合作的能力,教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
2、努力培养学生的发散思维
开放的探究式学习要不受任何人的约束,要有教师层层深入的引导。这节课设计中,教师注重教材的开放性和思考性,不断鼓励学生去思考,去探索不同的办法,让学生有自主选择的权利和广阔的思维空间,让学生独立思考与小组合作相结合,在相互交流的过程中,自行总结出了三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,效果很好。创设引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。
3。构建和谐的新型师生关系
本节课老师赋予了学生很多思考、动手和交流的机会,教师扮演了组织者、引导者和合作者的角色,充分发挥学生的主体作用,较好的体现了教师是学生学习的引导者,引导学生围绕问题的核心进行深度探索、思想碰撞等。从根本上改变了传统的教学模式,使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。拓宽了学生在数学教学活动中的空间。
这个案例一定程度上反应了要改变传统的教学方法,要实施新课改,最根本的还是教师角色的转变,转变传统意义上的教师教,学生学,不断形成师生互教互学,彼此形成一个“学习共同体”。为了进一步激发学生的潜能,使他们的讨论和思考更有价值,我们每一位教师都应该不断学习,提高个人素质,以设计出更好的教学环节,让师生共同成长!
三角形的面积 4
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
整节课中,我注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的.计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
在推导三角形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的三角形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:三角形与你拼成的平行四边形有什么联系?引导学生发现每个三角形的面积是平行四边形的一半,然后再让学生用一个三角形,想办法把它转化成已学过的图形来推导三角形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,但在本课教学中,也存在一些不足之处,例如:在第二次操作活动中,参与面不够广,部分学生手中拿着一个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
三角形的面积 5
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的'高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形的面积 6
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程理念的要求,教学重点应该是引导学生学会学习。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
一、动手操作,拼一拼,摆一摆,创造性的使用教材
在教学中,我让学生动手操作,分别用三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,小组交流操作中的发现,让学生体验和感知三角形面积公式的推导过程。在操作和交流的过程中,学生表现了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?学生经过比较、探讨发现,得出三角形的面积是拼成的平行四边形面积的一半。使学生在讨论中发现问题,解决问题。培养了学生的合作精神。
三、应用公式解决生活中的实际问题
新课程非常重视学生在活动中的`体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。使学生尝到应用知识的快乐,学生学得认真,愉快。
四、反思课堂教学
我感觉:在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah÷2。学生对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。这样提供材料思维含量低,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。这样的操作是肤浅的,没有起到促进学生建构知识的作用。
基于以上思考,我想下一年再教学这一内容时,我想引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
三角形的面积 7
《三角形的面积公式推导》 学了三角形面积的计算公式后,很多学生在作业中经常在计算三角形面积时,总是忘记除以2。订正作业时,大部分同学都知道自己是忘除以2了,可是这样的情况还是时常出现。我很是困惑,难道是我的教学在哪里出了问题?我反思我的课堂教学。
我回忆了自己的教学过程,在探究三角形面积计算前,先让学生用书上剪下的几对完全一样的三角形进行探究,再进行班级交流。学生顺理成章地用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah2。从表面上看,学生动手操作了,实际上学生只是根据教师的设计机械地拼一拼。为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?学生根本就没有主动地思考,更谈不上猜想和创造。这样的操作是肤浅的,因此学生的记忆也是不深刻的。这样想来,学生作业时会忘记除以2也是情有可原。
反思整个教学过程,教师用一条无形的线牢牢地捆住了学生,让学生用2个完全一样的.三角形拼成一个平形四边形,老师预先设置了一个坑,让学生往下跳,这怎么还叫探究呢?我想,在探究学习的过程中,我们为学生提供的探究性的学习材料要有一定的思维含量,要有利于展现知识的生成过程,要为促进学生的发展服务。要让学生自己跳着摘到果子,而不是为学生架好了梯子让他们去摘。现行教材直接为学生提供两个完全一样的三角形,让他们尝试拼成已学会面积计算的图形,这样的材料,其思维含量明显偏低,这样的探究,缺失了学生主动寻找材料的过程,就会影响学生解决问题策略意识的培养。
基于以上思考,我给学生留了这样一个回家作业:
你还能用其他的方法推导三角形的面积计算公式吗?结合你的推导方法说一说为什么计算三角形面积时要除以2。
第二天,在交流时,学生兴致很高。有的把三角形拦腰截断,拼成平行四边形,并作了说明:因为这里的高是原来三角形高的一半,所以用三角形的底乘高后要除以2;还有的把三角形转化成长方形(同教科书P16上你知道吗?半广以乘正从的做法),并说明:这里的底是原来的一半了,所以要除以2。这里,由于三角形的面积计算是学生自己想办法探索发现的,他们对计算方法的理解就非常深刻。我想,这种探究不是依靠教师一厢情愿的暗示、授意,而是一种真正意义上的探究。探究中,学生经历了主动建构的过程,这才是有价值的探究。
三角形的面积 8
本节课主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我创设实践操作情境,营造自主探索的学习氛围,激发学生课堂探索的欲望。 在教学中我力求突破传统教学的'模式,充分体现以“学生发展为本”的教学理念,在获取新知的过程中大胆放手,让学生有足够的时间,以小组为单位对三角形的面积进行探索和交流。小组讨论交流后,我请各小组代表到黑板前进行汇报并说说他们的想法。学生从不同的角度、不同的手段、不同的方法达到一个目的──发现并推导出三角形面积公式。在练习设计中,让学生观察、比较两个三角形的面积是否相等,然后把其中一个三角形的顶点在平行线上移动,使学生清楚地看出,等底等高的三角形形状不同,但是面积都相等。
三角形的面积 9
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的.面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形的面积 10
今天是教师节,孩子们的心思都乱了,都沉浸在过节的氛围中。早上的第一节,还是按预定的安排完成了《三角形的面积》教学。
我的主要思路先是复习,通过复习平行四边形的面积公式的推导过程提炼转化思想,在例4的处理上略施技巧,让学生自主构建想要把三角形变成我们学过的平行四边形,只是在为什么必须是两个完全一样的两个三角形,处理还是显得仓促,应该提供素材让孩子动手摆一摆,虽然我们提出两个面积一样的三角形能不能拼成一个平行四边形?有孩子提出面积相等,可能形状不同,此处也结合多媒体,估计基础差的同学可能理解不了。
在操作和填写表格的时候,指导还不充分,有的同学拼出平行四边形但是高不是整格子,不好确定,需要换一个角度来摆。在探讨和推理三角形的面积公式时,同学理解得很清晰,由于我的反复练说,孩子们对于三角形面积公式的理解很透彻,尤其是为什么要除以2有了深层次的理解。
在教学中,注意三角形和平行四边形的关系,这样,在完成练一练的两题就特别顺畅,尤其是一些基础差的'孩子也能很快解决出来。
昨天在备《三角形的面积》一课中,《小学数学教师》杂志中就有老师提出,也可以利用“剪拼”和“拼组”两种方式实现三角形到平行四边形的转化,本节课为了想一课时完成,所以我准备再上一课时,引导孩子们用“剪拼”的方式来探讨三角形的面积公式。
三角形的面积 11
本节课是在学生已掌握了长方形、正方形、平行四边形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的教学理念,在获取新知的过程中大胆放手,引导学生自主探索,培养学生的创新意识和实践能力。通过创设情境,激发学生探索的欲望。数方格的方法是求三角形面积的一种方法,但不是最普通适用的方法,为了引起学生对探索三角形面积产生强烈的欲望,在学生用数方格的方法求平行四边形、三角形面积的基础上,我有意出示一块很大很大的草地,问学生还能用数方格的方法求它的面积吗?从而激发学生初步探究。
引导学生结合复习环节中的平行四边形面积的推导过程,想到把三角形转变成已学过图形的面积进行计算。组织学生在操作中探索三角形面积的计算方法。课前我请学生准备了一些三角形,课中让学生自由选择一种三角形(锐角,直角,钝角三角形),用剪一剪,拼一拼,摆一摆,移一移等方法进行操作、探索,在学生展示出各种转化图形后,引导学生主动探索、观察、发现、讨论、交流研究图形与已学图形之间的内在联系,大胆推导三角形的面积计算公式,培养了学生的'自主创新精神。经历探索之后的获得的成功,是另人快乐的,学生对数学的感受是美好的,这正是我们教师的期待,放手让学生去做、去发现、去探索,让学生体会到成功的快乐。
三角形的面积 12
三角形面积的计算这节知识是在学生已经掌握平行四边形面积的计算以及平移等知识与能力之后学习的。为了能充分地调动学生的学习积极性,使他们由厌学、苦学变为喜学、乐学,因此在设计这节课的时候,我是这样构思的:
一、运用跃进式提问引入情境教学。
情境教学,是指教师运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法。首先在复习这一部分我出示两个一大一小的三角形让学生比较,两个三角形的面积谁大谁小,这是一目了然的,每个学生都能回答。然后进行跳跃性提问:“大多少”?这种简捷的跃进式提问,强烈地激发了学生的探究心理,很快便产生期待学习的最佳心理状态,去引导学生探究新课。此时,所面临的问题的实质,就是求两个三角形的面积各是多少?由此引出了这节课的课题:三角形面积的计算。
二、以动激趣,揭示三角形面积的.计算方法。
动手操作,一方面可以为学生架起由感性认识到理性认识的桥梁,帮助理解和掌握新知识;另一方面,丰富的情感体验可把客观上的“要我学”内化为主观上的“我要学”,改变学生消极被动的学习局面。学生在学习三角形面积计算之前已有了平行四边形面积计算的知识基础,直接将平行四边形剪成两个全等三角形来进行三角形面积计算的思路,比用两个全等三角形拼成一个平行四边形的思路来得简捷、明快,更易于被学生接受。因此,我改变了教材用两个完全一样的三角形拼成平行四边形的方法,而是先在复习部分利用手中已有的一个平行四边形的图形,问:平行四边形的面积怎么求?使学生回顾起平行四边形的面积。然后教师边说边画对角线进行演示,将这个平行四边形沿着对角线把它剪成两个三角形,并将其重叠在一起,说明得到的一个三角形面积是原来平行四边形面积的一半,即三角形面积应该等于底乘高除以2。这样,用不到几分钟的时间,就揭示了三角形的面积算法。动手操作,创设情境,具体形象且具有直观的特点,使知觉和思维变得更直接、更迅速、更深刻,从而获得成功的乐趣。
三、多方验证,创设探索性问题的情景。
情景教学的一个长处是设障布疑,鼓励学生去探索,在此基础上引导学生训练思维的灵活性和深刻性,以培养学生的能力。为此,我接着引导学生深入验证活动。用沿着平行四边形对角线剪出两个完全一样的三角形,得到了三角形面积计算方法,这一方法对用“底×高÷2”计算三角形面积是否可*?我顺势引导,进行深入质疑。三角形有锐角三角形、直角三角形、钝角三角形,用“底×高÷2”这个方法是否适用于所有三角形面积的计算呢?从而将学生的思维活动推向一个新的高潮。这时,又让学生运用已有的各种学具进行摆弄、操作,这样学生学到的不只是公式本身,而是动手操作的能力,极大地调动了学生的参与意识,产生了强烈的情绪感染,学习气氛非常浓厚。
综观整节课的课堂教学,注重了培养学生的动手操作能力与分析推理的能力;同时激发了学生应用所学知识解决实际问题的能力,发展学生的空间观念。学生真正的成为了学习的主人,真正的掌握了学习的主动权。但是,通过本节课也看到了教师需要努力的方向。譬如由于比较紧张而导致教态不自然或教学中间环节有遗漏等现象。虽然今后的教育道路还很长,但我现在就会努力,每一节课都会与我的学生共同成长。
三角形的面积 13
《三角形面积计算》这节课的内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
这节课的教学目标一是让学生在推导三角形面积公式的活动过程中会用自己的语言表述三角形面积公式的推导过程。除了设定知识目标以外,更重要的是培养学生的能力,所以这节课除了让学生会计算三角形的面积外,还注重培养学生与他人交流、合作、学习的能力。让学生通过与他人的合作交流学会新的知识和本领。最后情感目标方面,让学生感受数学与我们的生活是紧密联系的。
我先让学生自主合作探究三角形的面积计算式,由学生预先准备几对三角形,探究三角形的面积计算公式。学生根据自己的理解,很快地探究得出三角形的面积计算公式,小组中每个学生都是主角,可以发表自己的见解,使学生的个性得到发展。
接下来,我让学生按三角形的三种类别进行交流汇报。学生很快得出结论,无论是哪种三角形,面积的计算公式都是底乘以高除以2。教学到这里,学习任务是否就完成了?学生在前一课时的基础上学习这部分内容很容易,如果上到这里,岂不是原地踏步?这时,我抛出一个新问题:用一个三角形能不能也剪拼成一个平行四边形或长方形?学生体验到前半节课成功的快乐,带着浓厚的的.兴趣投入到新的问题研究中。
后来,学生通过操作发现了:新剪拼成的平行四边形的底是原来三角形的一半,高是原来的高,所以,新的平行四边形的面积是三角形的底的一半乘以高,即:S三角形=底÷2×高。实验证明了,也可以S三角形=高÷2×底。学生可高兴了,他们懂得了利用数字的特点来灵活地计算三角形的面积。对于中差生来说,掌握了这三个数量,至于这三个数放的位置可以灵活排放,计算起来更容易。
三角形的面积 14
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:1。剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。2。拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。3。观察,拼成的平行四边形和三角形之间有怎样的关系?4。想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的'同学拼成的平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
三角形的面积 15
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础,三角形面积计算的教学着重要求学生通过动手操作、合作探究出三角形面积计算公式,
从而加深三角形与已学图形之间的联系。重点在于理解三角形公式的推导过程,会根据公式进行计算,还要强调学生不能忽略三角形面积公式中除以2。
上课前我带领学生一起复习我们所学过的图形的面积公式,长方形面积=长宽,S=ab,正方形面积=边长边长,S=a2 ,平行四边形面积=底高,S=ah。然后引导学生回忆平行四边形是如何推导出来的,沿着平行四边形的任意一条高剪开,通过平移后得到长方形,长方形的面积和原平行四边形的面积相等,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。帮助学生回忆转化的`教学思想,并直接引出课题,开门见山。
让学生拿出提前准备好的各种三角形,六人一组,动手拼一拼,想一想,怎么把三角形转化成我们所学过的图形。这一活动安排主要是为学生提供一个开放的空间,让学生亲身经历自主探索的过程。当同学们都拼好之后,我找个别小组介绍他们是怎么拼的,第一小组汇报,学生告诉我,他们是用两个锐角三角形拼成的一个平行四边形。我随即拿了两个不一样大小的锐角三角形拼在一起,问学生,为什么我拼不成?学生立马就能指出因为它们形状不一样大。然后引导学生指出是两个完全相同的三角形,加深学生对完全相同的理解。第二组是用两个完全相同的钝角三角形拼出的平行四边形,第三组是两个完全相同的直角三角形拼出了长方形。让学生继续讨论,这几种拼法有
什么共同点,在交流比较中概括出结论,即用两个形状完全相同的三角形拼出一个平行四边形,当学生指出所拼出的都是平行四边形时,我设下问题,直角三角形拼出的不是长方形吗?学生一起告诉我长方形是特殊的平行四边形,加深学生对长方形和平行四边形的关系的理解。当学生把三角形和平行四边形联系起来时,引导学生去共同发现三角形和所拼成的平行四边形之间的关系,它们等底等高,每个三角形的面积是所拼成的平行四边形面积的一半,让学生自己去体验,加深学生对三角形计算公式的深刻理解。并且强调为什么要除以2。根据平行四边形公式让学生自己总结三角形面积公式=底高2,S=ah2。
【三角形的面积 】相关文章:
三角形的面积 11-26
三角形的面积 09-19
《三角形的面积》 06-17
三角形面积的计算 11-26
数学《三角形的面积》 05-17
《三角形面积的计算》 09-02
《三角形的面积计算》 09-03
三角形的面积 15篇09-19
数学《三角形的面积》 11篇09-16