《因数与倍数》
身为一位优秀的教师,我们要有很强的课堂教学能力,通过 能很快的发现自己的讲课缺点,如何把 做到重点突出呢?以下是小编整理的《因数与倍数》 ,希望能够帮助到大家。
《因数与倍数》 1
教学中我发现倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的因数,接下来4和12的'关系,学生都争者要回答。
如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不比老师给予的有效得多。
《因数与倍数》 2
1、这堂课的行走过程。学习了五堂同课异构的《倍数和因数》,一直想自己尝试一下这堂课的教学,无奈,四年级的孩子已经学过了,就放在三年级进行教学,预习自己先到一个班级熟悉一下,和六年级的孩子打习惯了交道,现在一下子走进三年级课堂,真的还有诸多的'不习惯,一堂课下来,自己用一个“急”字贯穿课堂,说话方式有待调整,于是,再一次梳理教案,详细备好每一句话。第二次上课,请了三年级的数学老师听课,出现了一个“涩”点,就是:9是倍数,9是因数的判断,但是学生稍作点拨,还是能完全理解的,师生配合,还算顺利,另外有一些小节问题处理得还是不成熟。由于“卡”得不算太“涩”,所以,也没在意。第三次课题组正式上的时候,当出现“9是倍数,9是因数”的判断,学生竟齐声回答:这种说法是正确的。其实,出现这种情况并不是偶然的,现在,再一次理一理,发现,开始的谈话,借鉴了“三个人,有两个儿子,两个爸爸”没有用好它,反而给了学生一个错误的提示,而且“先入为主”,学生进行正迁移,从数学原理来看,没有真正处理好“数形结合”,处理因数个数与摆几种图形的关系,课堂显得思维含量不够,数学价值有些削弱,所以,教案我又作了一定的修改。
2、关于“体验教学”主题的思考。体验既是过程,又是结果。通过学生观察老师三种写因数的方法,谈谈自己的体会,在交流、碰撞中,深化自己的认识。通过自己找因数、倍数的体验加深对知识的理解。这是我教学的出发点,实施得怎样,还需要同行的指点。
《因数与倍数》 3
《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
这节课另一个给我感触最深的.是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
《因数与倍数》 4
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的.乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
《因数与倍数》 5
本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的.存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。
《因数与倍数》 6
在学习了“因数和倍数”这一单元后,照例要过进行复习。课堂上,在引导学生复习了“谁是谁的倍数,谁是谁的因数”、“2、5、3的倍数的特征”、“奇数和偶数”、“素数和合数”这些概念后,我要求学生先写出20以内的素数(2、3、5、7、11、13、17、19),再写出20以内的合数(4、6、8、9、10、12、14、15、16、18、20)。这时,我问学生:“谁能利用这些数来提一个问题,考考大家?”学生一时哑然,不知从何下手。我微微一笑:“老师来带个头,请问:最小的素数是多少?”“哦!”学生立刻醒悟,争先恐后地举手发问:
生1:最小的合数是多少?
生2:20以内有几个素数?
生3:20以内有几个合数?
生4:哪个数既不是素数也不是合数?
生5:哪个数既是素数又是偶数?
生5:20以内有哪几个数既是合数又是奇数?
生6:“自然数不是素数就是合数”这句话对不对?
生7:“所有的偶数都是合数”,对不对?
生8:“所有的素数都是奇数”,对不对?
生9:自然数按它的因数的个数分成哪几类?
生10:“1是所有自然数的因数”这句话对吗?
学生有的提问,有的作答,情绪高涨,思维活跃,忙得不亦乐乎。
流水不腐,户枢不蠹”,如果要想让课堂成为“清澈的渠水”,就必须不断地为它注入“活水”,这个“活水”就是一个个精妙的提问,而如果这些“活水”就来自学生自己的思考,那么这将是多么有生命力的课堂!
上述教学片断中,教师只是抛出了一个问题,但就像点着了焰火的引信一样,课堂立刻绽放出绚烂的火花!学生纷纷把自己积累的数学知识亮了出来,提出了一个个问题,既考了考别的同学,又训练了自己的思维和语言表达,又让大家应用概念的能力得到了增强,还活跃了课堂气氛,让一堂平淡无奇的复习课变得精彩纷呈。
由此,我认为要培养学生提问的能力,教师要先培养自己提问的能力,用精妙的`、恰到好处的问题,激发学生的思维,唤起学生的思考,只有学生的思维被调动起来,才能提出有一定质量的问题,促进自己和同学的数学能力的提高。
《因数与倍数》 7
开学后上第一节课年级组教研课,挺有压力的。毕竟放了这么久的假,感觉有点不习惯,好象字都写不稳一样。还好,上完课后感觉还可以。
因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“3×4=12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。
为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。
针对这节课,课后老师们就这堂课认真评析,真诚的.说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。
这几点既是目标也是方向,相信我们在新的一学期,团结协作,勤奋务实,努力朝着目标前进。
《因数与倍数》 8
本单元注意以下七个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。
1.加强概念间相互关系的梳理
(1)注意因数与倍数的相互依存的关系
(2)质数、合数与因数的关系
(3)2的倍数与偶数、奇数的关系
(4)与大数的读写相关联
如:一个七位数,最高位是最小的奇数,万位是最小的`质数,千位是最小的合数,
最低位是最大的一位合数,其余各位都是最小的偶数。
这个数作(),读作()。
(5)2、3、5的倍数与乘法口诀紧密联系。
2.要用“活”教材
(1)教学中要用好教材,用活教材,教学实践证明,从单数与双数入手探究奇数与偶数;从乘法口诀入手,探究2的倍数,探究5的倍数,探究3的倍数,比教材安排的教学内容进行教学,学生更容易掌握知识。
(2)注意培养学生的抽象思维能力(本单元知识特点的抽象性)
要用归纳推理:就是从个别性知识推出一般性结论
(1)偶数、奇数
(2)5的倍数:5、10、15、20、25、30——个位是0或5的数是5的倍数
2的倍数:2、4、6、8、10、12、14、16、18、20……
3的倍数:
(3)质数、合数:写出1——20各数的因数进行归纳推理
3.教给学生学习的方法
列举法:
如:18因数6的倍数:
又如:P16一个数既是42的因数,又是7的倍数,这个数可能是()
4.教给学生养成“有序学习”的良好学习习惯
5.注意知识的联系,与用字母表示数的结合。如:
数A最小的因数是(),最大的因数是()
数B最小的倍数是(),()最大的倍数
6.注意概念的判断
(1)所有自然数.不是奇数,就是偶数()
(2)所有自然数不是质数,就是合数()
(3)所有奇数都是质数()
(4)所有偶数都是合数()
7.注意发散思维的培养
31□是5的倍数,这个数可能是()
75□0是3的倍数,这个有()种情况,它们是()
2□6□是25的倍数,也有因数3,这个有()种情况,它们是()
8.在学习方法上尽可能让学生利用“学案”进行课前探究,课中探究,从探究中学习和掌握知识。如质数与合数
《因数与倍数》 9
本节课的重点是让学生掌握因数、倍数的概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:
一、加强对概念间相互关系的梳理,引导学生从本质上理解概念。
因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的`因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。
二,引导孩子在自主探究中学习新知
在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。
三、注意培养学生的抽象思维能力
教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。
《因数与倍数》 10
这个单元课时数比较多,对于学生数感的要求比较高,对于学生观察能力,比较能力,推理能力的培养是个很好的训练。通过一个单元的教学,发现学生在以下知识点的学习和掌握上还存在一些问题:
1、最大公因数和最小公倍数
教学中,我让学生经历了三种方法:法一是先找各数的因数(或倍数),再找两个数的公因数(或公倍数),最后再找最大公因数和最小公倍数;二是介绍短除法;三是对于特殊关系的数(倍数关系或互质数)直接根据规律写结果。根据复习和练习反馈,发现学生对数的感觉比较欠缺,特殊关系的`数不容易看出来,且两个概念有时还会出现混淆情况,也就是对因数和倍数的理解不够透彻与深刻。如果学生对找最大公因数和最小公倍数学不扎实,将直接影响到后面的约分和通分。所以我准备在平时每节课都有三到五个训练,并进行专项过关。在应用这个知识解决实际问题时,有少数后进生比较难以理解,需要辅助图形来分析,也需要一个时间的积淀过程。
2、质数合数与奇数偶数
这四个概念按照两个不同的标准分类所得。学生在分类思考时对概念的理解比较清晰,但混同在一起容易出现概念的交叉,如2既是质数又是偶数,9既是合数又是奇数。
3、235倍数的特征
如果单独让学生去说去判断一个数是不是235的倍数,学生比较清楚,但在灵活应用时就比较迟钝,特别是用短除法寻找公因数时,不能很快的进行反应,数的感觉不佳。
以上是本单元学生在学习过程中的主要障碍,数感的培养需要一个过程,而概念的理解加深还需要平时不断的训练。多给学生一点耐心,再坚持一份恒心,相信学生们会有提高,会有改变。
《因数与倍数》 11
总的感觉是上好一堂课不容易。当确定好内容后,我和吴艳、顾志成三人各自备课,第二天放学后化了整整一个半小时讨论教案,后又几经修改,但总感到时间来不及。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,学起来比较枯燥。如何使学生通过四十分钟愉快轻松的学习掌握这乏味的概念性内容,如何开头,各部分之间怎样衔接,每一个知识点采取何种形式呈现、展开,重点如何突出,难点如何突破,那几天这许多问题始终盘绕在脑海中,课上下来根据学生的参与情况,掌握程度可以说达到了教学目标。我觉得整个课堂教学注意了以下几点:
1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。
试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用学生乔雨雷、乔风光兄弟间的关系呀,于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
2、注意引导学生进行有效的合作学习。
动手实践、自主探索、合作交流是新课程倡导的学习方式,公开课不管上的什么内容,不管有没有必要往往都要叫学生讨论,看起来热热闹闹,其实有多少学生真正参与了讨论。往往是一组中的优等生把答案说出,其他学生洗耳恭听。当3、2、5的倍数写出来后,我问:“整体观察这几个数的倍数,你认为一个数的倍数有什么特点?”首先问题有讨论的价值与必要性,其次当问题提出后我先让学生独立思考,看到学生陆续举手时,再组织学生讨论交流,完善自己的想法。(其实这是我一贯的'做法,必须在每个学生独立思考的基础上进行合作学习。)
3、内容环环相扣、过度自然流畅。
从生活中的相互依存关系迁移到数学中的倍数因数,从而揭示课题,引出谁是谁的倍数,谁是谁的因数,到找一个数的倍数或因数,归纳找的方法。整个教学过程环环紧扣、一气呵成,通达顺畅。
4、练习设计由易到难,由浅入深,既巩固了新知,又发展了思维。
“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。让学生判断自己的学号数是哪些数的倍数,老师手里拿了2、3、5几张数字卡片,老师出示卡片,如果学生的学号数是老师出示卡片的倍数就可以站起来。最后留下了学号是1、7、11、13、17、19、23、29、31、37、41、43、47的学生,让学生想办法如果他们也要站起来,老师出示的卡片上应是几?学生面对问题积极思考,享受了数学思维的快乐。
疑问:一开始的摆12个小正方形拼成长方形,得出三个积是12的乘法算式,我想这里的操作可否省去?一方面用去时间较多,对教学内容关系不大,如果说是培养操作能力也不是在这个时候。另一方面这堂课练习时间比较少,挤出的时间可用于练习。
我想如果我们每堂课都能精心设计的话,对学生对我们教师都会有很大的提高。
《因数与倍数》 12
复习课是教学过程中一种非常重要的课型,对夯实学生的基础、培养和提高学生运用知识、解决问题的能力起着举足轻重的作用。复习课不是新授课的简单重复,在教学过程中起着与新授课同样重要的作用,但是又与新授课有着本质的区别和联系。复习课更强调学生的自主学习、反馈矫正、展示交流等环节,复习时,要引导学生自己动手整理知识结构,把知识系统化、条理化,从而把点状分布的知识连接成线,如同把散乱的珍珠穿成了漂亮的珍珠链,拿起一颗,就能连起一串。如何上好复习课值得我们去研究和探讨。
下面是我在复习四年级下册第九单元《倍数与因数》时,两次不同的主要教学过程及本人对这两次课的印象和反思。
第一次教学是这样的:我先请学生回忆这个单元学习了哪些内容;接着让全体学生背诵了倍数、因数、偶数、奇数、合数、素数等概念和是2、3、5的倍数的特征;最后,出示了很多类型的习题,如找倍数与因数的,判断素数与合数的,根据2、3、5的倍数特征填数的……。
整节课教师忙得不亦乐呼,幻灯片换了一张又一张,看起来似乎什么内容都复习了;学生就像赶集一样,做了这一题又忙哪一题,但收获甚微。
这次是苏教版教材的第一轮使用,我这个从事多年人教版教学的老教师虽在新课改培训中加大了新课程理念的学习,但因多年产生的教学习惯而很难有所真正的改变,是基于传统的数学课堂教学,认为单元复习就是由教师带领学生把知识点再全部扫描一下,多设计一些习题,让学生反复操练,只有让学生当上了熟练工,才能应付考试。而这种炒冷饭的复习课,忽视了重点、难点,学生茫然地被教师牵着鼻子走,学习没有了主动性,教学效果当然不乐观。
第二次教学时,我在复习课前先让学生反思自己本单元的哪些知识掌握得比较好、哪些知识还掌握得不好并整理成书面材料。在批阅了学生整理的书面材料后,发现比较集中的问题是:写一个数的因数写不全,判断一个数是否同时是2、3、5的倍数时有困难,对于一些特殊的素数、合数与奇数、偶数的特征掌握不好。因此,复习时,我先请每个学生任意写一个两位数,写完后观察这个数有什么特点,并结合这一单元学到的概念说一说。然后出示了一道开放题:“谁能根据11、15、21、37、45、48、57、60、83、90这些数提与本单元的知识有关的问题?’学生思维活跃。有的提:“请判断哪些是素数,哪些是合数,哪些是奇数,哪些是偶数?”有的提:“请写出这些数中每个合数的全部因数。”有的提:“这10个数中,哪些数同时是2和3的倍数?哪些数同时有因数3和5?哪些数既是2的倍数又有因数5?哪些数同时是2、3、5的倍数?”每次学生提出问题后,教师都及时组织学生完成练习。接着,教师在黑板上写下48□,让学生继续思考:要使48□既有因数2,又是3的倍数,□里应该填多少?有学生说0、2、4、6、8都可以。有学生马上反驳说,2、4、8都不可以,只能填0或者6。教师追问原因,相机复习被3整除的`数的特征,接着出示问题:”如果要使□48既是2的倍数,又是3的倍数,□里应该填多少?”学生讨论完后,教师再引导学生思考:“观察、比较48□和□48,同样要填一个数字,使它既是2的倍数,又是3的倍数,为什么答案不同?”有了前面的对比练习,学生终于明白在口填数的诀窍所在:既要考虑整除的特征,又要观察数字所处的位置。这时,教师强调要灵活运用所学的知识解决问题。最后,教师要求每个学生拿出错题集,先自己复习,然后以同桌两人为一组,出题考对方,教师巡视指导。
课堂上不时有学生间的争论,有学生举手请教老师、有同学之间的互助,每个学生学的都很积极主动,全然没有复习课的单调枯燥之感。
这次的复习是基于学生对知识的理解水平,本着尊重学生的原则,以学生为主体,先学后教,抓住重点、难点,设计有层次的习题,举一反三,调动学生的学习积极性,不求习题的多样繁杂,但求激活每个学生的思维,引导学生在自学中学会发现、在倾听中学会理解、在讨论中学会思辨。
《因数与倍数》 13
《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,我紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的'因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
《因数与倍数》 14
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,a能整除b。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。但是若老师对整除的概念不做讲解的话,今后的知识学习可能会造成一些缺陷,因此我在这课时中,结合老教材的知识给学生进行了渗透,学生学习起来掌握的很好。利用除法、乘法都能很快的找到一个数的因数与倍数。
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用生活与数学之间的联系,来帮助学生理解因数倍数相互依存的关系。比如,我上课前利用班级中学生的父子关系和朋友关系来说明“朋友、父子”词语的含义,它是指两个人之间的一种关系,只能造句为“某人是某人的朋友”。这样的话局把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计较自然贴切,让学生感受到数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数和因数之间的相互依存关系。
教育家第斯多惠曾说过:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”因此教学中,教师要重视学生的主体地位,给学生提供充分思考和自我表现的空间,引导他们利用已有的知识去探索发现新的知识。如何找一个数的因数是这节课的重点也是难点。根据学生的.实际情况,我进行了重组教材,先让学生根据乘法(除法)算式“一对对”地找出18、15、24的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。学生在自己找因数和倍数练习后又总结了最大的因数和最小的倍数都是它本身。我想这应该比教师的传授要好百倍。
一节课下来,学生学习起来十分轻松,教学设计尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,学生乐学,思路清晰。以上是自己教学后的一点感悟。
《因数与倍数》 15
《倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。 这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。 这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一) 操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。
(二)自主探究,意义建构,找倍数和因数
一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
(三)抓住学生思维的“最近发展区”,让学生在“独立思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。
找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的.学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(四)变式拓展,实践应用---—促进智能内化
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
(五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生先进性了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
【《因数与倍数》 】相关文章:
《因数与倍数》 12-01
《倍数与因数》 03-31
《因数和倍数》 10-24
《因数与倍数》数学 11-20
《倍数和因数》 12-12
因数和倍数的 02-22
倍数和因数 05-13
《倍数和因数》 03-03
因数和倍数 07-14