首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >

时间:2023-01-12 19:39:36 我要投稿

  作为一位到岗不久的教师,课堂教学是重要的工作之一,借助 可以快速提升我们的教学能力,那要怎么写好 呢?下面是小编为大家收集的幂 ,欢迎阅读,希望大家能够喜欢。

幂

幂 1

  教材分析

  “同底数幂的除法”选自人教版八年级上册第15章第3节。本课的主要内容是根据除法是乘法的逆运算,从计算具体的同底数的幂的除法,到计算底数具有一般性的字母,逐步归纳出同底数幂除法的法则,并运用法则熟练、准确地进行计算。本节课的学习对于学生来说,无论在知识上,还是类比学习能力和抽象思维能力的培养上,都起着不容忽视的'作用。

  学情分析

  本节教材在学生系统地学习了整式乘法的知识后而安排学习整式除法,符合学生的从易到难的认知规律。同底数幂的除法法则是整式除法的基础,在本节同底数幂的除法则和零指数、负指数的规定中,体会规定是因实际计算的需要而产生的。再次体验认识来源于实践,并在实践中不断发展。同时在除法运算中体会乘除的联系,容易构建完整的知识体系。

  教学目标

  (一)教学知识点

  1.同底数幂的除法的运算法则及其应用.

  2.同底数幂的除法的运算算理.

  (二)能力训练要求

  1.经历探索同底数幂的除法的运算法则的过程,会进行同底数幂的除法运算.

  2.理解同底数幂的除法的运算算理,发展有条理的思考及表达能力.

  (三)情感与价值观要求

  1.经历探索同底数幂的除法运算法则的过程,获得成功的体验,积累丰富的数学经验.

  2.渗透数学公式的简洁美与和谐美.

  教学重点和难点

  重点:准确熟练地运用同底数幂的除法运算法则进行计算.

  难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则.

幂 2

  《幸福是什么》是一篇寻找和认识幸福的过程。因此,我的教学重点就落到“认识什么是幸福”上。再抓住重点段的朗读来感受劳动创造幸福的真理。

  在教学时,我就直接的导入,你们认为幸福是什么?你觉得你的幸福是什么?紧接着就是了解故事的起因、经过、结果。再抓住重点段来理解全文即具体的分析课文。

  在上完了这一课之后,就觉得学生还是没有弄懂幸福到底是什么?我也对自己做了一个深刻的反思。主要存在以下问题:

  1、读的形式少:比如,我可以用默读、生自己喜欢的方式来读、比赛读等方式。以读为主。让生在读中思考、在读中体会、在读中感悟。

  2、学生合作探究的学习方式没有体现出来:比如,师先提出问题,让学生读,出现了问题之后,师可以适当的往好的'方面引导,再让学生来争论、讨论。不要一味的都是老师在评价,让他们在讨论的过程中也能学习。

  3、对幸福的理解,我认为幸福就是付出,劳动就是付出。还要引导学生要有一颗感恩的心。我们伸手向父母要零花钱时,你有想过你的父母的感受吗?上课不听讲时,你有想过老师的辛勤劳动吗?……

  比如:我在讲到,假如你现在是病人,医生把你的病治好之后,你会对医生说点什么呢?有一个孩子就说到:“医生,我家里很穷,都快吃不上饭了。我可以不给医药费吗?而且我家里上有老、下有小,你可以借一点钱给我吗?”我在上课时就没有怎么好好的去引导,这种学生就是明显的只知道叫别人帮助自己,不知道自己也要去帮助别人,就没有一颗感恩的心。我们老师不只是教给孩子们知识,还要教给孩子们做人的道理。好让他们都能更好的成长。

幂 3

  握幂的乘方运算性质,并能运用其进行相关的计算,此外培养学生的探索归纳能力和向学生渗透有关的数学思想是本课的另一目标。

  本节课的设计意图是让学生以“观察―归纳―概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展。从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。

  不足之处在拔高学生思维的过程中时间较仓促,梯度不够,今后还应加强研究和向他人学习,不断提高自己在各个方面,幂的乘方是鲁教版六年级年级下册的内容,学生已经在六年级上册中学过乘方,已经接触过用字母表示数,这为本课奠定了基础,但时间过长,在教学过程中我进行适当的复习。本节内容同时又是对幂的意义的理解、运用和深化。整式的乘除法是代数部分的基础,它为后面学习方程,函数做了准备。

  本节课的重点是让学生经历探索同底数幂的乘法这一规律(性质)的过程,然后理解其运算性质,并能利用这一性质解决一些与同底数幂的乘法有关的实际问题。从课堂发言和练习来看,学生在探究其性质时,推理能力和有条理的符号表达能力得到了一定发展。 本节课采取了导学案教学模式,并对每一个过程都进行了深入研究,在自主学习中把课本内容设置成了几个问题,由浅入深,由易到难,在合作探究中能以学生为中心,做到全体参与,使学生有问题意识和探索欲望;不仅重过程而且重结果,重应用。课前我精心设计探究计划,选择和组织恰当的教学材料;在指导教学过程中,把注意力集中在学生身上,不停地做出各种判断,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励、有启发、问在有疑之处. 同时引导学生注意了这几点:(1)指数相加而不是相乘 (2)负数、分数乘方加括号(3)法则逆用要灵活 (4)指数不写是1。本课的`主要教学任务是“同底数幂乘法的运算性质”,即同底数幂相乘,底数不变,指数相加。在课堂教学时,通过幂的意义引导学生探索发现得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例一、例二时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算经行辨析,学生基本上也能辨认清楚。在此基础上接着对于同底数幂乘法法则的逆运用进行探索,以上的教学环节,实施流畅,效果满意。

  回顾这一节课,这节课在教学过程的进度把握的比较好,而且条理比较清晰,课堂气氛很好,基本达到教学目标。但还存在一些不足。例如后面的练习题的设计,缺乏新颖,没有难度的变化,而且形式比较单一,不能更好的调动学生的积极性。忘记了返回刚开始情景导入中遗留的未解决的问题。另外课堂语言要注意规范和简练。

  在以后的教学中,首先制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,练习题的设计要有变式,要有梯度。立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。作为一名老师,缺乏丰富的教学经验,这需要在以后的教学过程中,多向新、老、教师学习,多听课,多进行反思。多学习教学理论,争取在课堂教学形式上有所突破。

幂 4

  1.本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做练习而人为的主观裁断时间安排,其实规律(公式)的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领。因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。对于这一点教师一定要转变观念。

  2.在同底数幂的乘法公式的探究过程中,学生表现出观察角度的差异,有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有的学生则观察入微,又统揽全局,表现出了较强的观察力。教师要善于抓住这个契机,适当对学生进行学法指导 。

  3.对于公式使用的条件既要把握好度,又要把握好方向。对于公式中的字母指数的取值范围,不必过分强调;而对于公式的特点,应当左右兼顾,特别是公式的左边,它是正确应用公式的'前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。

  总体来讲,我在教授中深刻地体会到新教材与以往的不同,新教材以学生为本的教学理念始终贯穿本课。采用多媒体教学方式,新颖、有效。学生的学习积极性有较大的提高,学习效果较好。原本枯燥的、抽象的纯数学的东西通过与实际联系,变得有趣、易懂。不但使学生掌握了课本上的知识,还使学生加强了对日常事物的观察分析的能力,真正使教学提高到培养学生能力的层面上来了,但是这对教师自身素质的的要求大大提高。当今学生通过各种媒体对世界的认识和了解较多,在互动教学中如不重视对学生的引导,要教好学生不是那么容易。只有自己不断的学习,充实自己,才能把新教材教好。

  我对自己教授本课基本是满意的,完成了制定的教学目标。但有些细节还有待完善,在今后的工作中将会改进。

幂 5

  对本节课的教学,我做了一些有益的尝试,根据实际教学情况,现总结如下:

  1.整个教学过程以学生为主体,充分调动了学生的学习热情,学生情绪饱满,课堂气氛活跃,能够较好地做到共同参与、独立探究、合作交流、良性竞争。

  2.在知识呈现的各个环节,按照知识体系本身的逻辑顺序,进行了有效的梯度设计,学生能够按照一个科学的思路,有条理地进行探索。班上一些学习能力较差的同学,也能够积极思考,“逐步攀登”,到达目标。“过关”阶段,在保证完成学习目标的前提下,学生自主选择任务,进行挑战,有意识地满足学生多样化的学习需要,发展学生的个性,使不同的学生在学习中得到不同的.发展。

  3.真正做到以人(学生)为本,关注学生的全面发展。对学生来说,学习是一种过程,也是一种体验,他们要经历观察、猜想、验证、归纳、推理等不同的思维过程,也会经历好奇、紧张、疑惑、困难等不同的情感体验,在这一过程中,我做到积极鼓励、小心呵护、正确引导,使他们在学习过程中体验到探索的乐趣,享受到成功的喜悦,促进了学生身心全面健康发展。

幂 6

  本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加。

  在课堂教学时,通过幂的意义引导学生得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例题时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算进行辨析,学生基本上也能辨认清楚。至此,学生对于本节课的基本知识点已经掌握。在此基础上,我开始引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想,学生掌握情况良好。接着对于同底数幂乘法法则的逆运用进行探索,并应用到实际问题中:课堂教学环节,实施流畅,效果满意,但是在探索将不同底的幂转化成同底数幂进行计算时,感觉学生理解困难。

  课后我分析造成这一结果的根源,觉得主要是因为:“课堂内容安排过多,学生练习不足,精力有限”

  这节课的主要任务就是一个运算性质,然学生理解很容易,但是要让学生能正确的进行计算以及解决实际问题,就会有很多问题。为了避免问题的发生,我在备课时就挖掘了很多教材上没有提及但是补充习题当中备受关注的题型。如最后的“探索将不同底的幂转化成同底数幂进行计算”。可是却事与愿违,由于大容量的课堂,造成教师讲解的'过多,而学生自己练习的时间不足,面对运算性质,教师提点固然重要,但唯有自己多练,积累经验,才能提高运算能力。

  在以后的教学中,首先在制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。总之,一节课40分钟,不能求全、求难,而是要关注所有学生对基本知识的掌握情况,这样的教学才扎实,学生学得才牢靠。

幂 7

  1、本节课学生的探究活动比较多,教师既要全局把握,又要其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实规律(公式)的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领。因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。对于这一点,教师一定要转变观念。

  2、在同底数幂乘法公式的探求过程中,学生表现出观察角度的差异:有的`学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有些学生则既观察入微,又统揽全局,表现出了较强的观察力。教师要善于抓住这个契机,适当对学生进行学法指导,培养他们“既见树木,又见森林”的优良观察品质。

  3、对于公式使用的条件既要把握好“度”,又要把握好“方向”。对于公式中的字母指数的取值范围,不必过分强调(实际上,这个范围限定的太小了);而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。

  4、教无定法,教师应根据本班的实际情况灵活安排教学步骤,切实把关注学生的发展放在首位来考虑,并依此制定合理而科学的教学计划。如,对于较好的班级,则可以优先发展,采取居高临下的教学思路,先整体把握再对比击破,或是将其纳入整体结构系统,采取类比的学习方式;而对于基础较薄弱的班级,则应以提高学习兴趣、教会学习、培养成功体验为主,千万不可拔苗助长,以防物极必反。

  总体来讲,我在教授中深刻的体会到新教材与以往的不同,新教材以学生为本的教学理念始终贯穿本课。采用的利用“Z+Z”智能教育平台进行多媒体教学方式,新颖、有效。学生的学习积极性有较大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,变的有趣、易懂。从根本上改变了过去那种填鸭式的教学方法。不但使学生掌握了课本上的知识,还使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。当今的学生通过各种媒体对世界的认识和了解较多,在互动教学中如不注重对学生的引导(特别是思想上的),要教好学生就不会那么容易。只有自己不断的学习,充实自己,才能把新教材教好。

  我对自己教授本课基本上是满意的,完成了制定的教学目标。但有些细节还有待完善,在今后的工作中我将会改进。

幂 8

  本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加。

  在课堂教学时,通过幂的意义引导学生得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例一、例二时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算经行辨析,学生基本上也能辨认清楚。至此,学生对于本节课的基本知识点已经掌握。在此基础上,我开始引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,如(a-b)2*(a-b)3,训练学生的整体思想,学生掌握情况良好。接着对于同底数幂乘法法则的逆运用进行探索,由练一练的第4题:(1)a7*a()=a12 ; (2)an*a*a()=a2n展开讨论,得出结论,并应用到实际问题中:一直am=8,an=32,求am+n的值(习题8.1第4题)。以上的教学环节,实施流畅,效果满意,但是在最后探索将不同底的幂转化成同底数幂进行计算时,感觉学生理解困难,没有完成教学任务。

  课后我分析造成这一结果的根源,觉得主要是因为:“课堂内容安排过多,学生练习不足,精力有限”

  这节课的主要任务就是一个运算性质,然学生理解很容易,但是要让学生能正确的进行计算以及解决实际问题,就会有很多问题。为了避免问题的发生,我在备课时就挖掘了很多教材上没有提及但是评价手册以及补充习题当中备受关注的题型。如最后的“探索将不同底的幂转化成同底数幂进行计算”。可是却事与愿违,由于大容量的.课堂,造成教师讲解的过多,而学生自己练习的时间不足,面对运算性质,教师提点固然重要,但唯有自己多练,积累经验,才能提高运算能力。

  同时,在一节课的45分钟内,学生的精力是有限的(上课已经是上午第四节),听了半节课下来,已经感到疲劳,在这样的状态下,讲解不易理解的知识点,必然使学生理解困难,事倍功半。

  在以后的教学中,首先在制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。总之,一节课45分钟,不能求全、求难,而是要关注所有学生对基本知识的掌握情况,这样的教学才扎实,学生学得才牢靠。

幂 9

  整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的应用不熟练,运算符号的确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。

  依据普陀区中学数学教学常规实施要求:

  复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的.运算法则的特征解决易错题;同时在各例题的设计上层层推进。例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;例2需注意区分幂的运算法则与同底数幂相乘法则的不同处,并注意运算顺序与运算符号的确定;例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。

幂 10

  从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流。

  思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。

  幂的乘方是单项式乘除运算的基础,必须让学生牢固掌握。我在教学中采用先复习乘方的意义和同底数幂相乘的性质,再引入幂的乘方的意义和性质,这样比较自然,易于学生理解。

  把幂的乘方的性质应用于计算,培养学生使用一般原理进行演绎推理的`能力,教学中应予以重视。我在这个环节的处理力度还不够大,分析的还不够透彻。在这个方面应该让学生正确识别幂的“底”是什么,幂的指数是什么,乘方的指数是什么,然后正确运用幂的乘方的性质进行正确计算。

  让学生探究幂的乘方的性质时,发现有少部分学生不能进行必要的推理,而是直接使用教材的结论[幂的乘方,底数不变,指数相乘。来解决做一做的内容练习。直接借用结论来使用的学习怕有这样几种情形:

  (1)学生懒得动脑,做一个实足的“拿来主义”更为合算,这种情况日久会养成一个不愿动脑的习惯,习以为常,学生的推理能力会得到“退化”。

  (2)学生的数学基础比较差,不知从何入手,也不知如何进行推理——说理为什么?。这种情况的学生应得到数学基础较好的学生或老师必要的帮助或指导。我在指导学生学习幂的乘方时,对学生易混淆的式子或错误从各种性质的本质入手进行必要的区别,从而明确错误的原因何在。学生练习时,并没有鼓励学生直接套用公式(法则)进行解题,而是让他们说明每一步的理由。这样做的目的是让学生进一步体会乘方的意义和幂的意义。

幂 11

  本周三公开教学,我授课的课题是《零指数幂与负整数指数幂》。

  本节课的内容是在初一学过正整数幂及其运算的基础上展开的`。在以前对于同底数幂的除法,要求被除式的指数要大于除式的指数。教材抓住这个条件,展开探索,从约分与同底数幂的除法两个角度“殊途同归”说明了定义零指数与负整数指数幂的合理性,这样,就在运算的需要之下,实现了指数的扩充,然后引导学生利用新的运算进行相关计算。

  整节课的教学基本按照预设有条不紊地推进。但出现在主要问题是课前没有对以前学过的幂的运算进行复习,所以在后面指数扩展后进行相关计算时一部分学生因为对运算法则的混淆导致时间浪费较多。

  在以后的课中要对学情进行充分的分析,想好各种可能发生的状况的处理。

幂 12

  1、在平时的教学过程中,没有注意培养学生应如何聆听他人的回答,导致学生只会认真听老师所说的每一句话,认为老师所说的才是重点,同学的意见都无关紧要;另外,就像上面所说,我总是担心学生漏听他人的意见,而将学生的回答进行简单的重复,这也是导致学生产生不良听讲效果的原因。

  2、我没有很好地区分强调和重复的意义。教学过程中重点的内容是应该强调的`,单并不是每一个内容都必须重复,不是重点内容的地方,学生回答正确了,教师就不需要再重复了;而这节课重点及学生易错的内容,学生即使回答正确了,教师也应该再次强调。基于以上两点原因,在今后的教学过程中,我应该逐步培养学生的听讲能力,提高学生的听讲效率,做到让学生自己去评判同学之间的回答是否正确,并给出准确的评价;学生回答正确的内容,若非重点或疑难,则尽量的不重复。

  3、本节课容量稍微大了点,可分两个课时来讲,同底数幂除法法则的逆运用可以放到下一课时,主要对同底数幂除法法则的直接运用进行训练,这样学生容易理解和掌握。

  本节课还有一点不足,就是对于练习的处理,我还是放不开,担心学生讲不好,总喜欢自己讲。其实完全没有这个必要,可以放手让学生,让学生去发现错误,并指出错误,真正体现学生的主体地位。

  学生的学习积极性有较大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,变的有趣、易懂。从根本上改变了过去那种填鸭式的教学方法,不但使学生掌握了课本上的知识,还使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。

幂 13

  本节课与同底数幂的乘法一样,同底数幂的除法的性质的导出也是一个由特殊到一般的'过程,运用探究的方法让学生主动的参与到性质的发现中来,有利于提高学生对知识的认可度和加深他们的印象。归纳得出性质后要特别注意性质中的一些条件,尤其是要让学生知道,底数a是不等于0的,这是因为若a=0,则除数为0,除法就没有意义了。另外这里不讲零指数和负指数的概念,所以性质中必须规定m,n都是正整数,并且m>n,这些条件都应让学生在运用时予以注意。在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆。乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同。底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题。

  由于这里不讲零指数,负指数的概念,所以在性质中加上了指数m,n都是正整数,并且m>n的条件,但是在除法运算中还是会遇到对于此种情况还可以多举例子,或者让学生自己举例自己计算从而得出=1,进而将这个结论推广。

  在解决同底数幂的除法的问题时,应该注意分清楚底数,指数,然后按照性质进行计算。

幂 14

  同底数幂的除法的性质是幂的运算性质之一,是整式除法的基础,所以,本节的`重要性可见一斑。

  与同底数幂的乘法一样,同底数幂的除法的性质的导出也是一个由特殊到一般的过程,运用探究的方法让学生主动的参与到性质的发现中来,有利于提高学生对知识的认可度和加深他们的印象。归纳得出性质后要特别注意性质中的一些条件,尤其是要让学生知道,底数a是不等于0的,这是因为若a=0,则除数为0,除法就没有意义了。另外这里不讲零指数和负指数的概念,所以性质中必须规定m,n都是正整数,并且m>n,这些条件都应让学生在运用时予以注意。

  由于这里不讲零指数,负指数的概念,所以在性质中加上了指数m,n都是正整数,并且m>n的条件,但是在除法运算中还是会遇到

  对于此种情况还可以多举例子,或者让学生自己举例自己计算从而得出=1,进而将这个结论推广。

  在解决同底数幂的除法的问题时,应该注意分清楚底数,指数,然后按照性质进行计算。

幂 15

  同底数幂的除法法则:同底数幂相除,底数不变,指数相减;是在同底数幂乘法的基础上根据乘、除互逆的运算关系得出的,回顾整节教学活动,从法则的引入、探索、总结及运用,我主要着力于以下三个方面:

  1、关于教材处理:为了给学生尽可能多的提供参与活动机会,在本节课中主要(1)通过“创设情景,探究新知”吸引学生参与活动。活动开始幻灯片显示“一种数码照片的文件大小是2 K,一个存储量为2 M的移动存储器能存储多少张这样的数码照片?”这一实际问题引入同底数幂的除法运算,学生在探索这个问题的过程中自然体会到学习它的必要性,了解数学与现实世界的联系,增加设问“你是怎样计算

  的?”促使学生参与到活动中积极探索运算方法。(2)通过“应用新知,再探新知”鼓励学生主动参与活动。在熟悉同底数的幂除法法则基本运用的同时,引导学生正确理解公式中字母的广泛意义,比如零指数幂的探索就是对原有正整数指数概念的扩展:

  先利用除法意义填空,再利用公式计算,你能得出什么结论?

  (1) 3 2÷32 =( ) (2) 10 3÷103 =

  ( ) (3) a m÷a m= ( ) (a≠0)

  学生独立完成

  解:利用除法意义计算

  (1) 3 2÷32 =1 (2) 10

  3÷10=1

  mm3 (3) a ÷a =1(a≠0)

  利用同底数幂的除法法则计算

  (1)32 ÷32 =3 2-2 =3 0 (2)103 ÷103 =10 3-3 =100

  (3)a m÷a m= a m-m =a0 (a≠0)

  0 学生观察后归纳得 :a =1(a≠0)即任何不等于0的数的0次幂都

  等于1。

  (3)通过“解决问题,填写评价表”促进学生参与活动。举一些生活中用同底数的幂就解决实际问题的例子,运用法则运算。并通过自我和小组对学习活动的评价,来反馈学习效果,以促进学生参与活动的积极性,也为我组织新的教学活动奠定了基础。

  2、关于教与学方法的选择:在教学活动中始终关注,如何认真组织让学生在丰富的活动中探索、交流与创新,因此用了“引导——发现教学法”。如:(1)应用乘除互逆思想,引导学生独立思考、小组合作,完成对同底数幂除法法则的自主探索,突出对学生代数推理能力的培养。如:推导同底数幂相除的运算法则: 方法一:am ÷a n=

  a 。 方法二:根据除法是乘法的逆运算 ∵ a m-nm-n·a n=a m-n+n=am ∴am ÷a n= am-n 因此可以概括出同底数幂的除法法则。(2)加强应用性,通过“求移动存储器的存储量是多少?”和“举出生活中应用同底数幂解决实际问题的.例子”两个环节,密切将同底数幂除法与现实生活及其它学科相联系,发展数学应用意识,突出对学生解决实际问题能力的培养。

  3、关于评价反馈。在活动中注重运用态势,语言对学生进行即时评价,在评价表的设计中安排多维评价;即关注学生发现问题和解决问题的能力更要关注自己教学中专业水平的发展和提高。

  总之,在同底数幂的除法这节教学活动中,通过组织学生从具体到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归,符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好的完善新的教学模式。

【幂 】相关文章:

幂的运算 02-18

幂的乘方 04-19

整数指数幂 05-07

《同底数幂的乘法》 10-31

同底数幂的除法 05-09

同底数幂的乘法的 04-18

同底数幂的乘法 02-09

语言 12-07

关于 的反思05-24

Baidu
map