二次根式的
作为一位刚到岗的教师,教学是我们的任务之一,写 能总结我们的教学经验,那么大家知道正规的 怎么写吗?下面是小编为大家整理的二次根式的 ,仅供参考,大家一起来看看吧。
二次根式的 1
本节课是二次根式加减的第二节课,它是在二次根式的加减的基础上的进一步学习,利用二次根式加减法解决一些实际问题.在设计本课时教案时,着重从以下几点考虑:
1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。
2.四人小组探索、发现、 解决问题,培养学生用数学方法解决实际问题的能力。本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆。同时加强师生交流,以激发学生的学习兴趣。
二次根式的加减,在训练二次根式的混合运算,都是在学生学习了基本的二次根式性质的'基础上,综合进行训练的。在每一个环节后及时的进行回顾反思,既可以解决在以前的学习过程中出现的问题,又可以对新出现的问题进行总结,吸取教训。学生习惯上把运算结果的有理数部分写在前面,无理数部分写在后面。要提醒学生在化简二次根式的过程中一定要仔细。学生在练习的过程中,对于自己出现的问题,都要随时反思,及时总结,找出原因。另外通过其他学生的错题,共同展示,共同反思回顾。 (1) 一定要复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算, 这样可以做到前后知识的融会贯通。 (2) 本节难点是由整式运算知识迁移到含二次根式的运算,老师最好用类比的方法加速学生 的理解.
学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。
二次根式的 2
二次根式这一章学习重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,这块教学内容是在实数的基础上,着重研究二次根式。在这一章的教学中,发现存在一些问题:
1、在教学设计中,对学情分析不足,主要是过高估计学生的学习能力,一方面每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,另一方面对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、八年级数学是新教材,在二次根式的化简中,老教材比较重视对具体数的化简,对字母的`要求不高,一般都确保二次根式有意义,而新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力,在教学过程中,我的教学理念还没有及时更新,对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
4、在学生的学习方面,也值得反思。学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
由于上面的诸多因素,学生在第十六章的学习还不够理想,在本章单元测验中,也得到了体现,高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,更新教学观念,努力提高教学效益。
二次根式的 3
本章的教学目标是经历二次根式的概念的发生过程,了解二次根式的概念,以及二次根式的性质和运算。在概念的教学上采用了问题导入法比较顺利。但对概念有一点疑惑,形如根号a(a>=o)的式子,那根号前面的系数要不是1呢,难道就不是二次根式了吗?本章的难点在利用性质化简。往往不顾条件就往下做,过后才会醒悟,这是一棘手的.问题。对于同类二次根式的概念的教学必须强调两点1要最简2被开方数相同。尤其在应用时学生会忽略第一点。
运算方面对加减法主要还是要熟练化简,对一些常用的数进行分解。其次同类要合并,问题不是很大。而在乘除法的运算上,方法用的不当会变的很麻烦。主要要学会细心观察,是先乘除后化简来的比较简单。
二次根式的 4
二次根式的混合运算是本章学习的落脚点,是前面学过的二次根乘法、除法及加减法的综合运用.通过本节课教学,使我意识到今后应注意如下几个方面:
1、教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。
3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
4、二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.
5、对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用.
6、在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、在二次根式的`加减运算时,首先需搞清楚什么是同类二次根式,同类二次根式的判断,关键是能熟练准确地化二次根式为最简二次根式。
8。二次根式的加减,首先要化简二次根式,化简之后,就类似整式的加减运算了.整式的加减实质就是去括号和合并同类项.二次根式的加减也是如此.合并同类二次根式
与合并同类项类似.在教学中应注意二次根式的加减运算与整式加减运算的类比。
9、判断两个或多个二次根式是不是同类二次根式,是将它们化简成最简二次根式,再看被开方数是不相同,被开方数相同就是同类二次根式,如果被开方数不相同就不是同类二次根式,这与根号的因数或因式无关。
10、合并同类二次根式后,根号前的系数不能是带分数。 在教学过程中,我收获了许多,例如对于教材该如何把握,对于例题与习题该如何选取,以及对于时间问题的处理方法等,为我今后的教学奠定了基础;与此同时,我在教学过程中也是有很多不足,例如声音问题,还不够大声,可是也是有点紧张所致,还有在课堂上视野太小,由于后排坐着听课老师,我的眼光总是在前排同学处徘徊,而忽略了后排同学,其次,在教案上还有些许不足之处,再者还有在讲话方面不够术语话,过于口语化,这也是许多新教师的通病等等。总体来说,在整个教学过程中有得有失,希望在未来的实习时间里,通过进一步的学习,将不足之处加以改进与弥补。
二次根式的 5
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。然后指导学生根据问题导读单,去自学课本。通过自学课本再完成问题导读单,从而自己独立学习结合小组合作学习掌握二次根式的加减运算。通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。其中在三组中张晓东同学对同组其他学生说:3和5
不能合并了。有的同学问他为什么?他说就好像3x和5y一样不是同类项就不能合并。由此可见学生能够利用类比学习法进行本节课的学习。通过深入各组巡视指导可知问题导读单的设计是合乎学生的认知能力的。课堂上最精彩的还数同学们的学习汇报。例如:孙珊同学汇报时说:被开方数相同的二次根式是同类二次根式。刘聪同学马上站起来说:不对,应该是化简后被开方数相同的二次根式才是同类二次根式。又如:周佳佳同学汇报时说:二次根式的'加减就是合并同类二次根式。此时韩红锦补充说:准确的说应该是先化简,再判断哪些是同类二次根式,然后再合并。通过同学们的汇报,可见同学们在自学时是全身心的投入,充分的研究、讨论、交流才有如此准确的回答。
总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。这一切都归功于韩博士给我们带来的《新课程有效课堂教学行动策略》。我们应该借课改的东风,继续学习新课程的理论知识,武装我们的头脑,用它来指导我们上好每一堂课。
二次根式的 6
二次根式是代数式的一部分,其运算是有关运算中不可或缺的环节,是后续教学中的基础之一。因此,学好本章内容具有重要意义。而在教学中发现,有很多学生(甚至教师)对这一部分内容相当含糊,特别是积的算术平方根、商的算术平方根公式以及二次根式的乘除法公式的'有机应用,更造成了理解上的混乱,运算上的失误。要解决这个问题,就必须明确二次根式的化简、运算目的。通过 ,我认为二次根式的教与学必须围绕“小”、“少”、“分母无根号”三步诀。
所谓“小”,是指被开方数化简到最简(即化简成不能再开平方的整数)为止。为此,可以用二次根式的四个性质来实现这个目的:
①(xx)2=a;
②=|a|;
③=;
④=。
所谓“少”,是指结果中尽量少含根号。要达到这个要求,可以用二次根式的乘法、除法公式来解决:xx;。在教材中P7例1计算、P9例4等。
所谓“分母无根号”,是指分母中不含有根号。众所周知,开不尽方的数是无理数,要除以一个无限不循环的小数,是很困难的,所以要转化为有理数来解决。一般情况下,利用分式的基本性质,分子、分母同时乘以分母的有理化因式即可。
二次根式的 7
本节课主要内容是学习二次根式的定义和性质,重点是对二次根式的性质1和性质的理解及应用2.难点是性质1和性质2的区别与联系.
上完本节课后,我的反思如下:
1.由于本节课是苏科版九年级上册第21章的内容,是一节新授课。在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决.
2.在实际授课中,在让学生明白了本节学习目标后,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的四道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
3.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
4.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
5.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的'也比较仓促。在今后教学中,应注意时间的掌控。
6.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
通过这节课,使我的教学技能得到了很好的锻炼,我在今后的教学中,将继续学习好的一面,对不足之处进行改善,争取使自己的教学水平得到提高。
二次根式的 8
新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。于是课堂上,我转变角色,变数学知识的传授者为数学活动的组织者、指导者、参与者和研究者。教学活动中,我首先明确这节课的学习目标,然后学生在问题的基础之上逐步地得出这节课的重点内容。这样让学生感觉坡度不大,掌握起来比较容易。从而充分利用公式来做题。
我在设计练习题时,一是遵循学生的学习规律,从易到难。二是从易错点出发。并且我进行了分层练习,分为A、B、C三组。最后我附加了小测验。测验题紧扣本节课的知识内容,从易到难。数学来自于生活,我在最后加了一个实际题目。
从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化。整堂课始终把学生摆在第一位,让他们主动去学习。真正把课堂交给学生,让他们变成学习的`主体。层层的问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程。在这种学习活动中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力。
二次根式的 9
本节内容是在前一节二次根式的学习基础上,在熟练计算积的算术平方根的情况下,学习商的算术平方根的性质,同时为分母有理化作准备。所以在教学中更应注重积和商的互相转换,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。在此,过程中给予适当的指导,提出问题让学生有一定的探索方向。这一部分的教学我主要是从以下几点进行的:
1、注意了对平方根和算术平方根的复习,从而引入了二次根式的乘除法则,得到了二次根式乘除法的计算方法,和计算公式。公式就是工具,工具顺手了工作就快就有效率。因此,在这里让学生进行了大量的练习,熟练公式,打好基础。
2、注意了二次根式乘除法的'计算公式的逆用。
总结
了乘法公式的逆用就是用来使“被开方数中不含能开的尽方的因数或因式”,除法公式的逆用就是用来使“被开方数不含分母”,从而保证了结果是最简二次根式。注重方法的传授。
3、教学中强调了前面学过的运算法则和运算律对二次根式同样适用,反映了数学理论的一贯性,使学生在学习中感到所学并不难。在教学中,充分利用教材内容,结合实际问题提高学生的学习积极性。
4、教学中不仅要抓整体,更要注意一些重要细节。在学生做题过程中让学生用心总结一些简单值和特殊值的乘除和化简的方法。教材中淡化计算过程,这里也透露出教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。基础好和反应快的学生没有问题,但并不是都是这样,教师就要让学生了解计算过程每一步的由来。
二次根式的 10
这节课主要是先让学生借助以前算术平方根的知识来认识二次根式,重点是由二次根式引出相关代数式有意义的问题。
在教学中,我是先简单复习一下有关算术平方根的知识,但过了一个暑假回来,学生大部分都遗忘了,所以比预想中花的时间多了一点,在三个实际问题的学习中,由于做好了铺垫,学生开始进入状态,也就比较快能得出结果,关键是让学生从三个结果中找出共同点,在教学中,我是先让学生自己思考,然后提问了几个同学,再让其他学生进行补充,集中他们的回答进行归纳,在这个过程中,我觉得很好的调动了学生的参与性,也培养了他们勇于观察和提出自己看法的能力。这样的方式我觉得以后教学中我要多点采用。
代数式有意义的问题是本节的重点,也是难点,学生在学习中能理解二次根式和分式有意义时要满足什么,但综合在一起的代数式对学生来说就是个难点,在练习中,发现学生比较容易犯的错误是:
1、容易混淆什么时候大于等于0,什么时候不等于0,什么时候只是大于0。
2、解不等式的时候最后一步常出现错误。
3、在最后表达结果的时候出现错误。所以在分层训练时,我重点再次挑选了B组的两个题目进行分析和强调,之后再进行练习,作业的布置我也有针对性挑选了相应的题目。但是这个难点的突破对于中下生仍需要在今后的'学习中不断重现,比如利用课前小测的方式。在课堂分层训练卷中,从学生的反馈情况,我发现B组题量稍微偏少,应多加强点针对知识点的训练。
基于上述感受,我对本节教学有如下建议:
1、在复习回顾平方根,算术平方根定义时,应结合简单的数来举例子,毕竟学生经过一个长的暑假回来,以前所学遗忘太多,做好充分铺垫之后,学生进入状态才可以较好接受本节内容。
2、在引入二次根式的定义的过程设计中,应结合几个实际问题,让学生根据问题的答案找出它们的共同点,关键是让学生在经历思考,讨论后明确二次根式的定义,尤其是理解被开方数是非负数的要求。
3、在解决代数式有意义问题中,应先让学生明确二次根式与分式有意义分别要满足的条件,再进行综合训练。
二次根式的 11
本节课采用“自主互助,诱导探究”八环节教学模式。
这是我校经过一年多来的课堂教学实践而摸索出来的教学模式。“激趣导学”激发学生的求知的欲望,让学习进入学习的状态。“明确目标”让学生明确本节课学习的任务。“指导阅读”让学生带着问题去自学,体现的`自主学习。在“自主互助”环节中,我让同组之间的学生相互讨论、互相学习,让学快生教学慢生,从而掌握二次根式的概念与性质。
通过“说一说”、“做一做”“反馈”学习在自学的掌握情况,把课堂还给学生。在“诱导探究”环节中,通过学生看教材,启发诱导学生,解决学生在自学中不能解决的问题,从而突破难点。“当堂训练”检测学生对所学知识的掌握情况。我设计的题目由浅入深,学生可以运用今天所学的知识解决问题。最后在“小结提升”中,让学生说说自己的收获,形成知识体系。
我觉得整堂课下来,不足之处在于花在“说一说”、“做一做”的时间多了些,导致后面的“当堂训练”中的点评少了些,时间上把握不是很到位。以后的教学中我会努力的去改进,让每一个学生都能真正投入到课堂中来。
二次根式的 12
本节课是16.3.1二次根式的加减 。教法四环节教学法(一,预习,二,讨论,三展示,四,解疑)。学法是小组内1+1帮带学习法(一组四人,1,2,3,4号从优到差排开,1号帮3号,2号帮4号)。
本节课重点是推导二次根式的加减法则,掌握二次根式的加减法则,形成熟练计算技能。解决实际问题。难点是二次根式的`化简。这是本节课之前已经具备的知识,但,仍然需要通过计算加强。我首先通过复习二次根式的化简,整式的加减这两块知识,并进行计算,为新课做准备,然后创设情境问题,引出新课题。让学生了解本节课学习目标,带着问题去预习,讨论(组长负责一对一讲解),之后进行展示,过程中老师要对问题进行解疑,四环节教学,之后是练习,找同学上台展示,同时下面学生也展开比赛,争取台上一题,台下全部。因为,平时学生已经养成习惯,所以,同学们一边举手,一边做题,好多学生都能台下做完。得到小苹果。在这样争先恐后的氛围中,几乎没有学生无动于衷。四人一组避免了二人一组优生太少的问题,一帮一避免了人多顾不到的问题。这样课堂总是气氛活跃,学生参与度高,课堂效果优。
二次根式的 13
本节课的重点是被开方数相同的二次根式与合并被开方数相同的二次根式。
这节是最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定义,同类项的定义,合并同类项的法则,为这节课的学习作好铺垫。
同类二次根式:几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式。判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化简成最简二次根式,再观察它们的被开方数是否相同。
其次,同类二次根式必须同时具备两个条件:①根指数是2次;②被开方数相同,与根式的符号和根号外面的因式没有关系。
如何判断几个二次根式是不是同类二次根式,这些题可从课后练习中选取,但要注意书写规范。示范完成后做课后随堂练习与习题中的判断是不是同类二次根式的题目,做到及时巩固。
识别同类二次根式是二次根式的加减法的.前提,所以,后面的同类二次根式的加减法就顺理成章了,也是先选一个题目进行板演示范,步骤一定要完整规范,然后就是学生进行模仿性练习,这样处理起来,学生没有困难,整节课节奏紧凑,效果显著。
学生在练习过程中存在的问题:①合并同类二次根式时,二次根式前面的字母因式不加括号,如,应该是;②二次根式的系数是带分数时,没写成假分数的形式,如,应该是。这些错误要注意引导纠正。
二次根式的 14
在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,教学内容是着重研究二次根式。在本章教学中,存在以下问题:
1、在教学过程中仍然存在过高估计学生的学习能力,每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、在二次根式的化简中,新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的'学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在学生的学习方面,也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
基于上面的诸多因素,我班学生在学习还不够理想,在本章单元测验中,体现高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,提高教学实效。
二次根式的 15
本节课是二次根式第一节课,从小榄有线电视台发射塔电视节目信号的传播半径引入,符合学生实际,能引起学生学习兴趣,能说明学习二次根式在实际生活中有用,恰当合理的引入手到效果很好。
从实际问题列式,分析它们共同属性:正数(或0)的算术平方根,给二次根式下一个定义,从定义出发确定二次根式有意义的条件,进一步深刻理解二次根式,符合概念课教学的要求,学生掌握情况比较好,概念课教学的五个基本步骤:
(1)先给出实例。
(2)分析共同属性。
(3)下定义。
(4)概念应用。
(5)概念之间关系,在这节课很好体现。
在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的`运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
另外,要经常引导学生进行反思。如果每次都是简单做一做,学生很快就会有厌烦情绪。所以在引导学生这样做时,要给予其恰当的鼓励和启示、评价。让学生体会到自己这样做的好处,使他们在这样做的过程中得到激励和启示,并在后面的学习中有成功感。所以要大力表扬那些认真思考的同学,如对于一道难题,不管是自己解决还是和别人共同解决出来的,我都会让学生理清一下思路,思考这类题的解法,如果学生不会解,听老师讲解后明白了,我会让学生反思一下原因,为什么当时不会解,是什么原因造成的?学生只有对自己进行反思总结,就会收到意想不到的学习效果,使学生领悟生活和学习思想、方法,优化自己的知识结构,发展思维能力,培养创新意识。
【二次根式的 】相关文章:
二次根式 11-24
《二次根式》 10-04
《二次根式的加减》 12-01
二次根式的乘除 06-25
《二次根式复习课》 03-31
二次根式 15篇12-22
八年级数学下册《二次根式》 02-22
人教版九年级数学上册《二次根式》 12-06
二次函数的 10-18