- 相关推荐
用连乘方法解决问题
作为一位刚到岗的教师,我们都希望有一流的课堂教学能力,借助 我们可以拓展自己的教学方式, 应该怎么写才好呢?以下是小编收集整理的用连乘方法解决问题 ,希望能够帮助到大家。
用连乘方法解决问题 1
“问题解决”从原来的“三足鼎立”(计算、概念、应用题)到现在新课程的“处处渗透”,从有形到无行,从典型问题到生活问题,进行了较大的改革。一至三年级的问题解决教学,只在三下的第八单元专门劈出一个单元进行教学。但是由于在计算教学和概念教学中渗透了大量的问题解决,学生的问题解决能力得到了很大的提高。教材中的例1是连乘应用题。这类问题在学生的生活中经常碰到,因此学生并不感觉陌生。因此,在本课教学中,我力求体现以下几个方面:
一、以境促情,激发学生自主探究。
问题蕴含在生活之中。本节课教学中,我以学生喜欢的运动会作为情境载体,让学生计算运动会参加广播操的人数、长跑运动员的训练米数、运动会奖品购买、运动会照片存放等一系列数学问题,以主题式展开教学,让学生在这些熟知的生活情境中提炼数学问题、解决数学问题,不仅让他们体味到生活中处处有数学,也大大激发了他们自主探究的兴趣。教学中,当他们独立解决参加运动会广播操人数时,不仅列出了5×8×6=240(人),而且也列出了5×8×6=240(人)及8×6×5=240(人),通过相互交流,能有条理地分析连乘问题的数量关系,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。同时,我并不拘泥于单一的问题情境中,把连乘问题拓宽到“计算图书室的图书”等问题,让学生初步感知这一问题存在的普遍性,掌握连乘问题的基本数量关系,培养学生分析解决问题的能力。
二、丰富题型,培养学生解决问题的能力。
教师成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。本节课在新授完成后安排了四个不同类型的相关练习。练习1是例题的模仿练习,是对学生探究知识的适当巩固。练习2以表格的形式展现,让学生学会分析表格中的数量关系,并能对小组成员进行合理分工,在合作的基础上完成练习。练习3需要学生自己搜集相关的数学信息,并能根据问题提出缺少的数学信息,是学生对连乘问题的深入理解。练习4结合估算,体验解题策略的'多样化。通过不同类型的练习,使学生进一步掌握了连乘问题的数量关系,并了解到同一问题可以有不同的解决办法,培养学生合理灵活的解题能力。
当然课堂中也有许多亟待改进的地方。
1、课中师生生生的交流形式比较单一。每题几乎都是学生练习、教师指名、师生交流的形式得以展开,容易造成课堂的单调乏味。
2、只顾追求策略的多样化,忽略了连乘问题有时方法也具有局限性,不是每题都可以有三种不同类型的算式。如果在课堂上不加以对比,学生很可能造成思维定势,认为连乘问题只是简单的三个数相乘,而忽略对连乘问题数量关系的分析。
用连乘方法解决问题 2
今天,学习了《解决问题的策略》一课,对于一一列举的方法,有许多学生都在无意中用过,但是却没有把它系统化,甚至根本就没有正视它。换句话说,学生基本都认识列举的方法,这节课的学习过程主要是学生思考方法的整理过程。根据这一特点,教学中我在以下方面下了工夫。
一、遵循学生的认知规律
心理学指出,小学生思维发展的特点是由以具体形象思维为主要形式,逐步过渡到以抽象思维为主要形式。五年级学生虽然已具备了一定的抽象思维能力,但碰到问题的第一反应终究是形象化的。就比如本课例一,学生首先想到的是把围的样子摆出来或画出来,空间能力比较强的.学生是直接想出来。于是,我组织学生从摆小棒入手,在摆的过程中逐步发现规律、研究规律。在小棒已显得可有可无的基础上再引导学生屏弃小棒,共同进行方法的优化。整个过程充分体现教为学服务,每一步的推进既是课堂的需要也是学生的需要,学生主宰了课堂,课堂也发展了学生。
二、关注学生的思维发展
思维是贯穿数学学习始末的一项活动,故数学被喻为思维的体操。关注学生的思维发展也即了解了学生的学习情况。因此,课上我尽量做到让学生多说,说说自己的思考过程,说说对于问题的看法,根据学生的发言中的反馈信息合理安排接下来的环节。
但是,最后的巩固环节处理得很不到位。首先试一试时三份作业一起呈现,学生比较起来无从下手,未能找到各个的特点。而接下来几题由于时间关系交流得比较仓促,没有发挥应有的作用。
用连乘方法解决问题 3
《用连乘方法解决问题》是三年级的一节数学课,学生在二年级学习时,已经会用表内乘、除法以及加、减法解决简单两步计算的实际问题。本单元提供的需要用两步计算解决的实际问题,选材范围扩大了,提供的信息数据范围扩大了。问题解决”从原来的计算、概念、应用题到现在新课程的“处处渗透”,从有形到无形,从典型问题到生活问题,进行了较大的改革.我有以下几点反思。
1、从旧知引新知,让学生从两个一步应用题合成两步解答应用题。
接着请学生根据题目的信息思考:要求3个方阵一共多少人《第一步先求什么《第二步再求什么《要求学生独立思考,再同桌交流, 最后全班交流,学生积极性很高,而且有利于学生对不同解法的理解。使学生深刻的领会数学与现实之间的联系:数学源于生活,最终应用于生活。教材里两种解法都采用综合法思路引导学生分析推理。第一种解法是引导学生根据每个方阵有8行,每行有10人的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。第二种解法是先引导学生根据另外两个联系的条件思考能求什么问题,再根据什么求出题目的结果,然后依次用分步列式和综合算式解答。让学生用综合法思路来分析数量关系,有利于学生找出不同的中间问题,理解两种解法所表示的不同的数量关系,明确两种解题方法的区别,便于学生掌握分析和解答的方法。
2、以境促情,激发学生自主探究。
问题蕴含在生活之中。以学生喜欢的运动作为情境载体,让学生计算小朋友每天跑两圈,跑道每圈400米,她一个星期(5天)跑了多少米《以主题式展开教学,让学生在这些熟知的生活情境中提炼数学问题、解决数学问题,不仅让他们体味到生活中处处有数学,也大大激发了他们自主探究的兴趣。教学中,老师通过让学生选择老师出示的算式哪些是可以解决这个问题的方法,让学生通过算式说说想的过程,通过相互交流,能有条理地分析连乘问题的数量关系,并让学生初步感知同一问题可以有不同的解决办法,拓宽了学生的解题思路。让学生初步掌握连乘问题的基本数量关系,培养学生分析解决问题的能力。
3、突出学生主体地位,发展学生创新思维。
应用题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,在课堂上给学生留有充足的时间和空间,让学生去探索。这样教学不仅使学生的主体地位得到了充分的`体现,也使学生的创新思维得到的发展。
4、丰富的题型,培养了学生解决问题的能力。
教师成功的预设是课堂教学得以和谐展开的基础。单一的问题解决课教师稍有不慎就极易上成练习堆积课。老师通过知识层次的递进,一步步的让学生发现问题,解决问题,最后的练习也是水到渠成了。
【用连乘方法解决问题 】相关文章:
用连乘解决问题 10-04
分数连乘 10-06
用比例解决问题 10-19
《用估算解决问题》 03-18
《用除法解决问题》 11-12
《用比例解决问题》 11-20
用比例解决问题 03-15
用比例解决问题数学 02-27
《用比例解决问题2》 10-23