首页 申请书推荐信华体会电子竞技 通知工作总结华体会体育2串1 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>华体会可以注销账号不 >解方程的华体会可以注销账号不

解方程的华体会可以注销账号不

时间:2024-05-25 09:28:18 华体会可以注销账号不 我要投稿

解方程的华体会可以注销账号不

  作为一位到岗不久的教师,教学是重要的工作之一,借助华体会可以注销账号不 我们可以拓展自己的教学方式,那么应当如何写华体会可以注销账号不 呢?以下是小编精心整理的解方程的华体会可以注销账号不 ,欢迎阅读与收藏。

解方程的华体会可以注销账号不

解方程的华体会可以注销账号不 1

  这节课,先复习了方程的概念后,马上让学生说说方程需要满足几个条件,让学生意识到方程是一种特殊的未知数,然后出判断题,让学生进一步加深理解方程的意义,并让学生明白等式和方程的区别联系,紧接对有关方程的知识进行梳理,构建网络。并解决实际问题。

  本节课的教学目标是结合具体情境,了解方程的含义以及会用方程表示简单情境中的等量关系。在教学的过程中,我设计导学案,先课件出示几个情境图,让学生从生活中的跷跷板引入,看清情境图。让孩子们从中找出数学信息,从而找到等量关系,让孩子用自己的语言进行描述,尝试着列出方程。知道了什么是等式,接着在交流书本的三个情境图,逐渐加大难度。多请几位孩子说说他们找到的等量关系。尝试列出等式。然后观察列出交流,从而知道含有未知数的等式叫方程。做练习进行巩固如何找等量关系,从而列出方程。本节课,我力求让学生通过自主探索,利用生活的例子,让每个学生都有观察、作分析、思考的机会,提供给学生一个广泛的,自由的活动空间,让学生大胆尝试,探索,感受数学的趣味。学生也都表现得比较积极,通过同桌交流等形式,找出等量关系,列方程时,同学们用不同的方式列出了式子,有些学生可能还受到旧知识的影响,把要求的未知数单独放在了等式一边,当时我虽然告诉孩子们方程不能这样列,但从某些后进生做的练习来看要转变过来还是有些困难,我想,可能是我没能把书本第一个出现天平的情境图讲的还不够透彻,不能真正掌握找出等量关系的'方法。整堂课当中,感觉对后进生的关注度不够,如果多加关注,可能可以找出错误资源,然后教师再加以引导,让同学们能更好的快速找出等量关系,更快的列出方程。最后,对自己比较不满意的是,1、学生说的问题与我设想的有出入。2、学生展示的时候不大胆。流程走完了,留给学生的空间太少了。

  想让学生有个轻松愉悦的学习氛围,但可能我还需要一些时间,希望以后能上出让学生轻松愉悦的数学课。

解方程的华体会可以注销账号不 2

  有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。

  本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:

  1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。

  2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。

  基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的`原因可能是安排的'时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”, 这可真是越变越复杂。

  值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,我觉得按加减乘除法各部分之间的关系教好呢,而用等式的性质教学好比较复杂。

解方程的华体会可以注销账号不 3

  解方程这部分教学内容与老教材相比有很大的差异,尤其是在方程的解法上,利用天平平衡的道理解方程,学生在理解和运用上都有一定的困难,而且本部分教学很是枯燥无味,于是我加入了探秘的情节,和本节课完全吻合。下面就我讲授的这节课做一下反思:

  一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,它能使方程的左右两边相等,不信咱们试一试。”由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。

  二、在练习题的.安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。

  本节课不足之处在于最后留的时间过少,检验的格式没有完整的交给孩子们。可内心矛盾:检验的目的已经达到了,必须要重视其格式吗?

  总体来说,喜欢让孩子们在快乐中学到知识,喜欢听孩子们说:“我还想再写。”

解方程的华体会可以注销账号不 4

  这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的xxx质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的问题加以数学化,引导学生通过xxx作、观察、分析和比较,由具体到抽象理解等式的xxx质,并应用等式的xxx质解方程。在这节课的教学中,让学生理解并掌握等式的xxx质应是解决一系列问题的.关键。

  一、让学生在xxx作中发现

  课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的xxx作为学生探究问题,寻找结论提供了真实的情境,辅以启发xxx、引领xxx的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。

  二、让学生在发现中xxx作

  引入了等式的xxx质,其目的就是让学生应用这一xxx质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的xxx质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。

解方程的华体会可以注销账号不 5

  学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。

  案例描述:苏教版数学六年级下册教材

  教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?

  学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。

  在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生X人,女生就有80%X人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程

  X+80%X=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的`意见:“也可以把女生人数设为X。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数X的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是X人,男生人数是X÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:X+X÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?

  仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人数设为X人呢?学生思考了一会列出:X+X÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:X+80%X=36、X+X÷80%=36哪一个解起来不较容易?学生通过计算终于明白:X+80%X=36方程的优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有X人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%X人,而且X+80%X=36是学生熟悉的形如:aX+bX=c(这里a,b,c已知),而X+X÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为aX+bX=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。

解方程的华体会可以注销账号不 6

  本节课的内容是在学生学习了用字母表示数、等式的性质的基础上进行学习的。本册教材的解方程不仅安排了形如x+a=bx-a=bax=bx÷a=b这样的简单方程,还安排了形如a-x=ba÷x=b这样的特殊方程。

  成功之处:

  1、淡化依据逆运算关系解方程,与初中数学相衔接。根据《标准(20xx)》的要求,从小学就引入等式的基本性质,并以此为基础导出解方程的方法,这样就避免了同一内容两种思路、两种算理解释的现象,有利于改善和加强中小学数学教学的衔接。从而摒弃了原来依据逆运算解方程的思路,能有效降低学生学习的难度,也降低了记忆的'难度。实际上依据逆运算解方程就是用算术的思路求未知数,只适合解一些简单的方程,到了中学还要重新另起炉灶。因此,利用等式的性质解方程能够帮助学生深入的理解方程的意义,能深入理解方程所揭示的等量关系,也更有助于逐步感悟方程的实质、等价思想和建模思想。

  2、重点教学特殊方程,体会用等式性质解方程的优势。在例3的教学中,先让学生自主尝试解方程20-x=9,大部分学生依据前面学习的内容写成了下面的过程:20-x=9

  解:20-x+20=9+20

  X=29

  可是学生经过检验发现x=29并不是方程的解,从而引导学生讨论怎样把新知识转化为旧知识来解决问题。

  不足之处:

  1、在练习中由于课本这样的练习太少,没有增加相应的题目,学生熟练的程度还是比较欠缺。

  2、学生对于归纳总结出来的特殊方程的解法还没有内化,导致学生出现解普通方程和特殊方程在解法上相混淆。

  再教设计:

  1、及时总结特殊方程的解法:当未知数是减数或除数时,方程两边要同时加上或乘未知数,再解方程。

  2、要弄清什么是减数和除数,避免出现不必要的错误。

解方程的华体会可以注销账号不 7

  教材是利用等式的性质来解方程。通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立,等式两边都乘一个数(或除以一个不为0的数),等式仍然成立的性质。利用探索发现的等式的性质,解简单的方程。如求出y+8=10中的未知数y。教材呈现了两种思路。一种是学生直接想“?+8=10”,从而得出答案。另一种是利用等式的性质解方程,即“方程的两边都减8”的方法。y+8-8=10-8,y=2。这样解方程,刚开始时,为了学生理解方便,等号左边的“+8-8”都要写出来,会比较麻烦,也容易出错。《数学课程标准》提倡算法多样化的新理念,激发了我对解方程这课从不同的角度来进行解读和探讨,因此,在学生理解了用等式的性质解方程后,我又留给学生一定的`时间和空间,让学生独立思考,发挥各自的聪明才智,自主探索,找出不同的解题方法。

  学生经历了独立思考,掌握的知识才更深刻、更透彻。久而久之,将促使学生养成独立思考的习惯,培养了学生解决问题的能力。将学生的方法整理后,我又适时给学生提供了另外两种解方程的方法,利用加、减、乘、除法各部分之间的关系来解方程和通过移项来解方程。

解方程的华体会可以注销账号不 8

  本节课的内容包括两个方面:

  一是理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”

  二是应用等式的性质解只含有加法和减法运算的简单方程。解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程。在这节课的教学中,应让学生理解并掌握等式的性质,这是为学生后续学习方程打下较扎实的基矗

  一、让学生通过动手、操作、观察中去发现等式的性质

  老师先出示天平,并在天平两边各放一个20克的砝码,“你能用式子表示出两边的关系?”生写出20=20;教师在天平的一边增加一个10克砝码,“这时的关系怎么表示?”生写出20+10>20,“这时天平的两边不相等,怎样才能让天平两边相等?”生交流得出在天平的另一边增加同样重量的砝码;然后依次出现后续的三幅天平图,学生观察,教师板书,并组织学生小组讨论交流:“你有什么发现吗?”通过全班交流,在交流中教师应逐步提示,因为这是一个全新的知识,得出等式的性质。最后,让学生自己写几个等式看一看。通过具体的操作为学生探究问题,寻找结论提供了真实的情境,富有启发性、引领性,让学生经历了解决问题的过程,并在问题的解决中发现并掌握了知识。

  二、让学生运用等式的性质解方程

  引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学习解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的.性质解方程,课前布置了学生预习,课中我先让学生尝试练习,但巡视中发现学生没有根本理解,我就利用天平所显示的数量关系,引导学生发现“在方程的两边都减去10,使方程的左边只剩下x”,并详细讲解解方程的书写格式,包括检验。通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。然后让学再次通过修正,试一试,巩固解方程的知识。本节课达到了预期的效果。

  三、遗憾的是,由于星期一集体活动的冲突,导致今天的上课时间30分钟都不到,因此学生的交流显得不充分,教师的重点讲解显得不到位

解方程的华体会可以注销账号不 9

  方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。

  五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:

  旧教材:

  x+48=127

  x=127-48

  依据运算之间的关系:一个加数等于和减另一个加数。

  新教材:

  x+48=127

  x+48-48=127-48

  依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

  在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。

  可是,当学到用方程解决实际问题时,却出现了状况。

  新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。

  如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的`矛盾又出现了。

  我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。

  如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”

  合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。

  如此一来,学生怎么能充分体会方程顺向思维的优越性?

  如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?

  我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。

解方程的华体会可以注销账号不 10

  这次教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

  原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的`解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。

  尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。

  在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。

解方程的华体会可以注销账号不 11

  这节课是“列一元二次方程解应用题(1)”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运。既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用。

  通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

  一、本节课第一个例题,是面积问题中的一个典型例题,我在引导学生解决此题之后,总结了解一元二次应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

  二、练习1是例题1的变式与提高,练习2是例题2的变式与提高。通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升,这是这节课中的一大亮点。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

  三、在课堂中始终贯彻数学源于生活又用于生活的'数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

  四、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

  五、需改进的方面:

  1.由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示.

  2.只考虑扑捉学生的思维亮点,一生列错了方程,老师没有给予及时纠正。导致使一些同学陷入误区.

  3.下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

解方程的华体会可以注销账号不 12

  有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。

  本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。

  基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的.方法。分析此次教学失败的原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”, 这可真是越变越复杂。

  值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,你们觉得是按加减乘除法各部分之间的关系教好呢,还是按等式的性质教学好呢?

解方程的华体会可以注销账号不 13

  本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的旧知识来解决,那你认为应该把这样的减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?

  通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的.过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。

解方程的华体会可以注销账号不 14

  一、引入了天平,理解等式的性质。

  新教材的突出之处从直观的天平入手,天平的两边同时加上或减去相同的重量,仍然保持平衡,这样就引入了等式的性质1,利用这个性质,可以解决a+x=b,或a-x=b的方程,接着又从天平的两边同时乘或除以相同的非零的数,天平仍然平衡,可以解决ax=b或x÷a=b的方程。从长远角度看,学生经过这样的学习,对于七年级以后的后续学习减少了障碍,很好地做好了衔接。

  二、两条脚走路,解决不便的问题。

  教材中有意避免了形如-x或÷x的方程的出现,可是在实际中,出现这种方程是不可避免的,如果出现了,我们教者如何解释呢?学生又应如何解答呢?当然还可以根据等式的性质来进行左右两边的化解,使得左边或右边变为形如x的情况,学生对于其中的减数与除数为未知数还可以启发他运用四则运算的内部的关系来解决。不要怕给了学生又一种选择的机会,这样在用等式的性质解决问题不方便时,未尝不是一种好的方法。

  三、抓住其本质,简化方程的过程。

  两边同时加上或减去同一个数的过程,其本质是为什么要这么做,当学生经过思考发现这样的过程就是把方程的一边变为只剩下未知数的过程,因而可以简化一些不必要的多余过程,典型的如x+5=20,x+5-5=20+5,让学生通过计算体验这样的第二步过程实际即为x=20+5,因而可以使方程的解答变得简便。学生觉得当然还是简便的过程值得效仿,积极性显得非常之高。

  四、确保正确率,及时进行检验。

  原来的`检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。

  同时,在这部分的教学期间,也有一些问题引发了个人的一些思考。

  首先是学习中如何提高学生的学习规范性,方程的解答是一种规范的过程,它有一些固定的格式,例如必须写“解:”,必须“=”上下对齐,要正确必须进行检验等,而这些都必须让学生多进行训练,多强化练习,理解各种题型的结构。

  其次是对于特殊方程的解答,如减数与除数为未知数的方程,用两种方法解决的问题,可能会引起部分的的不理解,会不会与教材主倡导的用等式的性质解决问题有矛盾呢

解方程的华体会可以注销账号不 15

  1、教材的编排上难度下降。有意避开了,形如:7.8—X=2.6,12÷X=1.2等类型的题目。把用等式解决的方法单一化了,这和提倡算法多样化又有了矛盾。尽管老师一再强调用等式的性质解,还是有多数学生用原来的方法解答。

  2、强调书写格式得有层次。告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,如果有过程,方程中的等号不易上下对齐,这点问题不大。到熟练之后省去过程时再强调格式。

  3、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,()可以实际上反而是多了。教师要给他们补充X在后面的方程的解法。要教他们列方程时怎么避免X在后面这样方程的出现等等。

  在实际教学中我们要求学生较熟练地利用等式的方法来解方程,用这样的方法来解方程之后,书本中不再出现X做减数,除数的方程题了,但学生在列方程解实际应用时,学生列出的方程中还有这样的题目,但不会解答,这时我们又要强调算法多样化,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的'学生还很难掌握这样方法。有的学生又不得不用除、减法各部分间的关系做题。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。因此教学中我还是对学生说尽量用方程的性质解,若遇到用等式的性质解决不了时,可以用以前学过的知识解答。认识方程华体会可以注销账号不 解方程华体会可以注销账号不 方程华体会可以注销账号不

【解方程的华体会可以注销账号不 】相关文章:

《解方程》华体会可以注销账号不 04-07

《解方程》华体会可以注销账号不 05-02

数学解方程华体会可以注销账号不 04-12

《解方程二》华体会可以注销账号不 03-28

《解方程》华体会可以注销账号不 (精选20篇)05-22

解方程的华体会可以注销账号不 15篇03-10

解方程教学设计10-07

解方程教案04-26

解方程二教案12-10

Baidu
map