直角三角形
作为一名到岗不久的人民教师,课堂教学是我们的任务之一,通过 可以很好地改正讲课缺点,优秀的 都具备一些什么特点呢?下面是小编整理的直角三角形 ,仅供参考,欢迎大家阅读。
直角三角形 1
本节课是一节复习课,内容是应用解直角三角形的知识解决实际问题。在教学设计中,我针对学生对三角函数及对直角三角形的边角关系认识的模糊,计算能力薄弱等特点,我决定把教学的重、难点放在了解决有关实际问题的建构数学模型上。通过对知识点的梳理、分析例题的解题思路、例题变式练习及巩固练习等教学,绝大部分学生能很好地掌握了如何建构模型的解决方法,很好地达到了本节课的教学目的。
由于自己在如何上好一节复习课上还处在摸索阶段,所以在设计与安排上还存在很多不足,如本节课设计容量较大,有1个实际应用例题抽象出四个基本变式数学模型,学生对每个问题逐个探究解答,时间感觉比较紧。但对另外一部分学生来说,他们基础较弱,对数学的`应用不是那么得心应手,不会合理找出边角关系,当然就不能准确寻求问题的答案。
我觉得这堂课有以下几个优点:
1、充分调动了学生参与课堂的积极性。
2、学生敢于提出问题、分析问题。
3、老师起到了引导的作用,小组交流、展示很有成效,兼顾了不同层次学生的学习。
不足:1、中间的小结让学生完成更好些
2、给学生思考时间、交流时间过多,独立完成时间较少。
总之在以后的教学中,讲解不宜太多,但是更多的是建立在学生的思维基础上,所以需要给他们留较多的时间。讲的太多反而得不到效果。应该注重适当的提问,把注意力集中在学生的思维上,提高学生的思维品质。在课堂上将努力做到让沉闷的课堂教学鲜活起来,让课堂真正成为数学活动的场所,成为讨论交流的学堂,成为学生展示自我的舞台!
直角三角形 2
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟
教学过程。
1、充分尊重教材,以勾股定理的逆向思维模式引入问题;充分引用教材中出现的例题和练习。
2、注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由"特殊→一般→特殊"的.发展规律。
3、在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4、注重对学习新知理解应用偏困难的学生的进一步关注。
5、对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
直角三角形 3
由于直角三角形是特殊的三角形,因而它具备一般三角形所没有的特殊性质。通过本节课的学习,要求理解已经学过的判定全等三角形的四种方法均可以用来判定两个直角三角形全等,同时通过探索得出“有斜边和一条直角边对应相等的两个直角三角形全等”这一重要而又特殊的判定方法,并能熟练地利用这些方法判定两个直角三角形全等。在研究的`过程中,注意渗透由一般到特殊的数学思想方法。为了实现教学目标,本节课改变了教材的情境设置,择取了一个更便于学生理解、更能激发学生兴趣的实例――集装箱的装运,使学生能在生活中找到数学原型,在思考中找到解决问题的办法。教学中鼓励学生大胆猜想,大胆辩驳,教师始终是一位引导者、组织者,学生的积极性得到充分发挥,取得了很好的教育效果。六、案例点评
本节课的教学设计有两大鲜明特色:一是重视组织和开发课程资源,关注和利用学生身边熟悉的材料,如集装箱、滑梯等,以学生已有的生活经验和感受为出发点,由课内延伸到课外,由学校走向社会,让学生切实感受到生活中处处有数学。二是注重学生在学习过程中的自主体验。教学过程中教师给学生留出了充分的活动时间和想像空间,鼓励每位学生动手、动口、动脑,积极参与到活动和实践中来。教学中将操作实验、自主探索、大胆猜测、合作交流、积极思考等学习方式贯穿数学学习的始终,促进学生形成主动学习的愿望和积极参与的意识,最终使教学的过程成了师生激情与智慧共生的过程。
在本节课的整个活动过程中,突出了标准的基本理念。从内容方面看,情境内容、议练内容都很贴近学生生活,问题串的难易程度合理,体现了基础性、普及性和实用性。从形式方面看,有学生的观察感受、有学生的独立思考,有生生的合作交流,有师生的合作小结,体现了普及性、平等性、合作性。从环节方面看,分层次的变式训练强化了知识及其应用的多样性,遵循了学生认知的自然规律,同时也把问题上升到多角度分析、灵活处理、恰当选择的数学思维高度,从而体现了数学课程的发展性。
直角三角形 4
(1)本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
(2)让学生深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义实际上分别给出了a、b、c三个量的关系,a、b、c用不同方式来决定的`三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
(3)解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,在处理例题时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
直角三角形 5
掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运用勾股定理与直角三角形的边角关系解决生活中的实际问题。
《课程标准》中指出“教学中应当有意识、有计划地设计教学活动,引导学生体会数学之间的联系,感受数学的整体性,不断丰富解决问题的策略,提高解决问题的能力”,注重对学生对知识间的沟通与联系进行讲解,将这些知识点灵活组合,通过综合性题目所提供的信息,搜寻解决问题的.相关知识点,找出解决问题的方法。在平时教学中能讲到中考一模一样的题目的可能性微乎其微.那怎么办,教给学生思考方法和解题的策略往往更有用.这样可以举一反三,会一题可能就会掌握一类题,并在学生理解之后及时复习巩固,努力把新方法新技巧纳入到原有的知识体系中。在解题中应该尽量的让题目一题多解,或者多提一解,尽量在学生思维的的转折点处进行点拨,这样最有效。
直角三角形 6
在解直角三角形中,我们习惯于利用三角函数根据题目中已知的边角元素来求另外的边角元素。其实,有时候利用方程来解决这样的问题甚至能起到更好的效果。
在《解直角三角形》中第四节船有触礁的危险中,其情境引入是这样的.:
海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行使20海里后到达该岛的南偏西25°的C处.之后,货轮继续向东航行.你认为货轮继续向东航行途中会有触礁的危险吗?
对于本题,要判断船是否有触礁的危险,只需要判断该船行使的路线中,其到小岛A的最近距离是否在10海里范围内,过A作AD⊥BC于D,AD即为小船行驶过程中,其到小岛A的最近距离,因此需要求出AD的长.根据题意,∠BAD=55°,∠CAD=25°,BC=20,那么如何求AD的长呢?
教参中是这样给出思路的,过A作BC的垂线,交直线BC于点D,得到Rt△ABD和Rt△ACD,从而BD=ADtan55°,CD=ADtan25°,ADtan55°-ADtan25°=20.这样就可以求出AD的长.这里,需要学生把握三点:第一,两个直角三角形;第二,BD-CD=20;第三,用AD正确地表示BD和CD.用这种思路,多数学生也能够理解。
但教学过程中,我发现利用方程的思路来分析这道题目,学生更容易接受。题目中要求AD的长,我们可以设AD的长为x海里,其等量关系是:BD-CD=20,关键是如何用x来表示CD和BD的长。这样,学生就很容易想到需要在两个直角三角形利用三角函数来表示:Rt△ABD中,tan∠BAD=从而,BD=xtan55°;Rt△ACD中,tan∠CAD=,从而,CD=xtan25°,这样根据题意得:xtan55°-xtan25°=20,然后利用计算器算出tan55°和tan25°值,这样就可以利用方程来很容易的解决这样一个题目,并且是大家很熟悉很拿手的一元一次方程。
可见,教学有法,教无定法,同样一道题目,不同的方法,却能够让学生理解起来,减轻许多思维障碍,这不正是我们教学中所要达到效果吗?
直角三角形 7
本节课是一节复习课,内容是关于解直角三角形的知识的应用复习。在教学设计中,我针对学生对三角函数及对直角三角形的边角关系认识的模糊,计算能力薄弱等特点,我决定把教学的重、难点放在了解决有关实际问题的建构数学模型上。通过对知识点的回顾、基础知识的练习,例题的解题思路、例题变式练习及巩固练习等教学,绝大部分学生能很好地掌握了如何建构模型的'解决方法,很好地达到了本节课的教学目的。
当然由于自己在如何上好一节复习课上还处在摸索阶段,所以在设计与安排上还存在很多不足,如本节课设计容量较大,有4个实际应用问题,学生对每个问题逐个探究解答,时间感觉比较紧。有时就有越俎代庖的感觉;本节课的教学内容是解直角三角形的应用问题。对一部分学生来说,他们从作辅助线构建直角三角形模型,到利用方程解答题目,直至描述答案都显得轻松自如;但对另外一部分学生来说,他们基础较弱,对数学的应用不是那么得心应手,不会合理构造直角三角形,也不能列出合理的方程进行解答。在课堂教学中,如何面向全体学生,如何培优与转差,这是值得思考的一个问题。
直角三角形 8
随着“五严规定”的实施,给九年级数学教学带来了许多挑战。例如教学时间缩短了,有限的教学时间里教师往往首先保证进度,往往学生的习惯的培养、能力的提升有所忽视;再如考试次数减少了,教师、学生双方对教与学的效果反馈难以得到及时准确的信息,学习内容的针对性、有效性难以保证;还有学生不全部在校晚自习了,学习方式的改变会带来一系列的问题。针对以上情况,20xx年3月25日,在高港区教研室和初中数学名师工作室的安排下,举行了“初中数学一轮复习研讨会”活动,我有幸在高港中学上了一节“解直角三角形的应用”的复习研讨课,下面我就本节课谈谈自己的想法。
本节课的复习目标是:掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运用勾股定理与直角三角形的边角关系解决生活中的实际问题。因为是中考一轮复习,所以我先将课前自主复习部分让学生课前独立完成教师批阅,这样在上课前授课老师能做到心中有数,再针对课前自主复习部分的题目有侧重性的讲,真正做到有惑必解,有疑必答。
本节课我共设计了3条例题,一是台风中心的运动问题,涉及到了仰角和俯角问题;第2题是一条20xx年的中考题,我将题目变式为3小题,将坡角、坡度、以及基本图形的渗透都融合在一题中,让学生学会分析、类比,并能独立归纳出此类题的解法,抓住题中的基本图形进行解题;第3题是一条设计方案题,目的'让学生选择测量工具运用解直角三角形的知识测量出塔的高度,并适当变式,如果当塔的底部不能直接到达测量时,如何设计方案求出塔高。
课上完后,我认真总结了本节课的得与失,本节课的主要失误的地方有两点,一是例1的处理上,应将点与圆的位置关系和直线与圆的位置关系结合例1一起来处理,这样学生对于为什么作出AD这条辅助线就很明晰了,效果将会更好,;二是小结时较仓促,应该让学生总结归纳出此类题的一般解法,找出基本图形,这样才有助于让学生知识形成体系,进一步得以提高。
《课程标准》中指出“教学中应当有意识、有计划地设计教学活动,引导学生体会数学之间的联系,感受数学的整体性,不断丰富解决问题的策略,提高解决问题的能力”,对于初三一轮复习,注重对学生对知识间的沟通与联系进行讲解,将这些知识点灵活组合,通过综合性题目所提供的信息,搜寻解决问题的相关知识点,找出解决问题的方法。在平时教学中能讲到中考一模一样的题目的可能性微乎其微、那怎么办,教给学生思考方法和解题的策略往往更有用、这样可以与一反三,会一题可能就会掌握一类题,并在学生理解之后及时复习巩固,努力把新方法新技巧纳入到原有的知识体系中。在解题中应该尽量的让题目一题多解,或者多提一解,尽量在学生思维的的转折点处进行点拨,这样最有效。
总之,通过本节课的教学,让我认识到了自身的不足,非常感谢高港区名师工作室这个平台,让我有了锻炼自己的机会,也相信通过初三一轮复习研讨会,大家对一轮复习有了较清楚的认识,让初三复习真正高效。
直角三角形 9
本节内容课标要求为:探索并掌握判定直角三角形全等的“斜边、直角边”定理,会用基本作图作三角形:已知一直角边和斜边作直角三角形.
根据《课标》要求,针对八年级学生的认知结构和心理特征,以及他们的学习基础,本节教学设计以问题为主线,活动为载体,在不破损学科知识的科学性、系统性的前提下,
对教科书相关内容进行了适当整编重组形成具有一定层次的问题序列,并通过“我回顾,我思考”“我探索,我发现”“我掌握,我应用”“我收获,我总结”“我实践,我提高”这五项活动既暗示本节教学思路,又体现“我学习我做主”。
具体体现如下:
一是在复习回顾,引入新课环节做的很实在,不做花架子。如图,在RtABC中,∠B=90°和RtDEF中,∠E=90°,要使ABCDEF,还需要添加哪些条件?你的依据是什么?
此题属于开放性试题,旨在通过此次的解决来复习回顾三角形全等的判定方法,说明所有判定方法都适合直角三角形全等的判定,同时,激发探究欲望,明确探究方向,引入课题。在具体处理的过程中,学生根据已有经验添加条件后,
教师适时引导总结属于添加的是:“两条直角边分别相等”、“一锐角和一直角边别相等”,还是“一锐角和斜边分别相等”,至此,教师适时抛出问题:既然直角三角形是特殊的三角形,那它有没有特殊的判定方法就是这节课要探讨的.课题,显得的水到渠成。
二是在诱导尝试,探索发现环节。通过学生独立画图、裁剪、比较、总结、归纳的过程,体会判定两个直角三角形全等的简便方法——“斜边、直角边”的形成过程。
在这一流程中,学生画图操作处理的很不到位。一方面,在读题并简单分析已知条件后,学生便开始动手画图,居多的学生画出了所要的三角形,
但是,上黑板的学生只画了一部分,待另一学生起来回答又出现错误(利用角边角画)时,教师发现了问题所在是没有审清题意,这时又回头看题后,起来回答作图的学生接连出了错误,
教师便直接给出答案,代替学生回答。这一处理,显得很是急躁,急于得出结果。另一方面,体现出教师教学机智不灵活,就是担心上不完而急于推进。事实上,追求高效的同时,有时候让课堂慢下来特别重要。
三是在变式练习的处理过程中,发现变式题的设置有重复现象,备课需要再细致。
四是小结环节,学生简单小结以后,教师针对本节课出现的问题进行了提示就收场,并没有进行条理性的总结。
直角三角形 10
一、取得的效果:
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“hl”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
二、存在如下的不足:
从学生作业反馈的.情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“hl”。二是不少的学生利用所学的知识来解决简单的问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
三、解决方法
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
直角三角形 11
解直角三角形及其应用是本章的重要内容。一个直角三角形有三个角、三条边这六个元素,解直角三角形就是由已知元素求出未知元素的过程。除了一个直角外,知道两个元素(其中至少有一条边),就能求出其他元素。这样的情况一般有五种,而解直角三角形的方法是本章内容的重点,因为,本章的学习目的主要就是使学生能够熟练地解直角三角形。而且也只有掌握了直角三角形的解法,才能够去解决与直角三角形有关的应用问题。在解直角三角形的应用这一节中,更充分地把“解直角三角形”运用到实际问题中去。通过一系列实际问题的解决,训练了学生分析与解决实际问题的能力,培养学生把实际问题转化为教学问题的能力。
在教学过程中,首先引导学生已学过的直角三角形有关元素之间关系的知识进行归纳整理,然后通过两道例题,体会直角三角形中除直角外的五个元素中至少要获得两个条件,就可以求得三个元素的特点,并归纳两个条件的类型。通过对直角三角形的理性分析和解题实践后,让学生体会到直角三角形中边角间的关系。主要通过三角形内角和与勾股定律和锐角三角函数比来表述。此外对不是直角三角形的,要领会数学化归的思想,通过作高,转化为直角三角形再来求解。
我觉得这堂课有以下几个特点:
1、要多给学生练的机会,例2可以让学生讨论完成,当课堂练习。
2、中间的小结,对学生有难度,可以在学生略微思考的情况下,老师做适当引导下,由老师得出,这个结论并不需要记忆,仅仅是给学生一个直接的感受:原来所有的这一类型的题目都可以这样解。
3、语速还是过快,要留给学生多的时间思考。
4、讲解不宜太多,但是更多的是建立在学生的思维基础上,所以需要给他们留较多的`时间。讲的太多反而得不到效果。应该注重适当的提问,把注意力集中在学生的思维上,提高学生的思维品质。
5、要多鼓励学生进行变式训练,达到自己会编题,知识就掌握牢固了。
总之,本节课是我对新课程理念的一次尝试,必存在缺陷,这将促使我进一步研究和探索。在以后的教学中,我在课堂上将努力做到让沉闷的课堂教学鲜活起来,让课堂真正成为数学活动的场所,成为讨论交流的学堂,成为学生展示自我的舞台!
直角三角形 12
本章内容从梯子的倾斜程度说起,引出第一个三角函数——正切。因为相比之下,正切是生活当中用得最多的三角函数概念,如刻画物体的倾斜程度、山的坡度等。正弦和余弦的概念,是在正切的基础上、利用直角三角形、通过学生的说理得到的。
接着,又从学生熟悉的三角板引入特殊角30°、45°、60°角的三角函数值的问题。
对于一般包括锐角三角函数值的计算问题,需要借助计算器。教科书仔细地介绍了如何从角得值、从值得角的方法,并且提供了相应的训练和解决问题的`机会。
利用锐角三角函数解决实际问题,也是本章重要的内容之一。除“船有触礁的危险吗?”“测量物体的高度”两节外,很多实际应用问题穿插于各节内容之中。
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一,锐角三角函数在解决现实问题中有着重要的作用,如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般说来,这些实际问题的数量关系往往归结为直角三角形中边和角的关系问题。
研究图形之中各个元素之间的关系,如边和角之间的关系,把这种关系用数量的形式表示出来,即进行量化,是分析问题和解决问题过程中常用的方法,是数学中重要的思想方法。通过这一章内容的学习,学生将进一步感受数形结合的思想、体会数形结合的方法。
通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。直角三角形中边角之间关系的学习,也将为一般性地学习三角函数的知识及进一步学习其它数学知识奠定基础。
直角三角形 13
第一,通过本节课教学,我觉得教学目标定位准确恰当。结合课程标准,在对教材深入钻研的基础上,围绕知识与技能、过程与方法、情感态度价值观,制定了以“会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形”作为本节课的核心目标,同时让学生“通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选择算式进行简便计算,从而体会探索、发现科学的奥秘和意义;渗透数形结合的数学思想,培养学生良好的学习习惯。”结合课堂教学,我个人认为教学目标达成度是比较高的。
第二,本节课的设计,力求体现新课程理念。给学生自主探索的时间,给学生宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性。
第三,教师是课堂教学的组织者、引导者、合作者、帮助者。在学生选择解直角三角形的诸多方法的过程中,我并没有过多地干预学生的思维,而是通过问题引导学生自己想办法解决问题,教师组织学生比较各种方法中哪些较好,而后选择了一种解法进行板演。
通过本节课的实践,我觉得也存在一些需要自己深刻反思和改进的.地方。比如,在探讨解直角三角形的依据时,处理的有些过于仓促,应该让学生从理论上深刻地理解其中的数学原理;再如,在探索解直角三角形需要具备的条件与三角形全等的判定的内在联系时,问题的指向性太明确,过多地关注问题的预设而忽视了即时的生成,如果放手让学生自己去想,可能效果更好;又如,课堂总结时,总想把现成的规律性结论用学生喜欢的形式告知他们,但忽视了学生在没有亲身体验与感受的情况下,老师的努力将大打折扣。在今后的教学中,我将更多地关注学生的发展与提升。
总之,本节课教学力争体现新课标的教学理念,对新课标下的新课堂的丰富内涵进行积极的探索与有益的尝试。着力做到新课堂是数学活动的场所,是讨论交流的学堂,是渗透德育的基地,是学生发现创造展示自我的舞台!
直角三角形 14
本节课是北师大版教材数学七年级下册第五章《三角形》的第七节,内容紧接学习三角形全等的条件及作三角形后教材安排的一课时内容。本节课的目的是探索和掌握直角三角形全等的条件,突破重点的方法就是让学生动手实验,合作交流,在活动中去领会、感悟。学好本节课的知识对学生更好地认识三角形,发展学生的空间观念和解决实际问题的能力有很大的帮助。
本节课我以引导学生发现、探索、研究为主线,激发学生参与到教学活动、并能将知识应用到实际问题中。通过码头集装箱的问题,引出新旧知识的冲突,自然地过渡到探索直角三角形全等的条件上来。通过剪纸探究活动的一步步展开,展示了知识的生成过程。同时在这个过程中让学生经历了观察、实验、推理、交流等活动,渗透了由一般到特殊的数学思想方法。通过实际问题的应用,让学生在"做"的过程中,借助已有的知识和方法主动探索新知识,为改进数学学习方式,突出自主、合作、探究式学习提供了必要的保证。通过本节课的教学,我有以下收获:
1.创造性地使用教材。本节课我在教学中对教材进行了重组,改变了教材中设置的情境,换成学生更感兴趣的情境,利用新旧知识的冲突激发学生思考和探究。在例题的选择上,精选密切联系生活实际的问题作为课堂练习。在例题的编排上,难度呈螺旋式上升,照顾到不同层次的学生,同时让学生体会数学在生活中的魅力,体现出教师是"用教材",而不是简单地"教教材"。
2.注重学生在学习过程中的自主体验。教学过程中我给学生留出了充分的活动时间和想像空间,鼓励每位学生动手、动口、动脑,积极参与到活动和实践中来。教学中将操作实验、自主探索、合作交流、积极思考等学习方式贯穿数学学习的始终,体现了新课程倡导的自主、合作、探究的学习方式。
3.落实了学生的主体地位,实现了教师角色的转变。本节课我自始至终和学生一起共同探索,通过引导学生去主动探索和发现,使学生真正成为学习的主人,在积极参与的过程中感受探索的乐趣,使不同的学生得到不同的发展,满足了学生的.求知、参与成功、交流和自尊的需要。教学过程的开放,为学生积极参与教学过程,充分发挥聪明智慧提供了很大的空间,大大激活了学生的思维,培养了学生的创新精神和实践能力,达到了教师既是学生学习活动的组织者,又是学生学习活动的参与者的目的。
这节课的不足之处有:
1、每个环节的时间较为紧张,有些题目的处理上不够精细。
2、对于学生的表现评价较为单一,没有起到激励学生的作用。
3、对与基础的落实较少,今后还需再巩固。
直角三角形 15
回顾本节课,虽然我花费了很多的心思合理设计了本课,但在实际教学的环节中,还是出现了一些问题:
1、教学中不能把学生的大脑看做“空瓶子”。我发现按照自己的意愿在往这些“空瓶子”里“灌输数学”,结果肯定会导致陷入误区,因为师生之间在数学知识、数学活动经验等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的,所以是不是应该在教学过程中尽可能多的把学生的思维过程暴露出来,头脑中的问题“挤”出来,在碰撞中产生智慧的火花,这样才能找出症结所在,让学生理解的更加到位。
2、教学中应注重学生思维多样性的培养。数学教学的探究过程中,对于问题的结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样感觉像是整个课堂仅在我的掌握之中,每个环节步步指导,层层点拔,惟恐有所纰漏,实际上却是控制了学生思维的发展。再加上我是急性子,看到学生一道题目要思考很久才能探究出答案,我就每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于学生独立思考和新方法的形成。其实我也忽视了,教学时相长的,学生的思维本身就是一个资源库,他们说不定就会想出出人意料的'好方法来。
另外,这一节课对我的启发是很大的。教学过程不是单一的引导的过程,是一个双向交流的过程。在教学设计中,教师有一个主线,即课堂教学的教学目标,学生可以通过教师的教学设计的思路达到,也可以通过教师的引导,以他们自己的方式来达到,而且效果甚至会更好。因为只有“想学才学得好,只有用自己喜欢的方式学才学的好”。因此,本人通过这次教学体会到,教师在备课时,不仅要“备教材、备学生”,还要针对教学目标整理思路,考虑到课堂上师生的双向交流;在教学过程中,要留出“交流”的空间,让学生自由发挥,要真正给他们“做课堂主人”的机会。
无论是对学生还是教师,每一个教学活动的开展都是有收获的,尤其是作为“引导学生在知识海洋里畅游”的教师,一个教学活动的结束,也意味着新的挑战的开始。
总之,这一堂公开课,让我既收获了经验,又接受了教训,我想这些都将会是我今后教学的一笔宝贵财富。
【直角三角形 】相关文章:
解直角三角形的应用 04-08
《直角三角形全等的判定》 03-14
语言 12-07
《学会反思》 09-10
关于 的反思05-24
比的 08-29
教学的反思07-23
教学的反思05-17