首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >《圆柱的体积》

《圆柱的体积》

时间:2023-03-08 17:25:48 我要投稿

《圆柱的体积》 (集锦15篇)

  身为一名刚到岗的教师,我们需要很强的课堂教学能力,在写 的时候可以反思自己的教学失误,那么优秀的 是什么样的呢?以下是小编帮大家整理的《圆柱的体积》 ,供大家参考借鉴,希望可以帮助到有需要的朋友。

《圆柱的体积》
(集锦15篇)

《圆柱的体积》 1

  在上圆柱体积公式前,我精心备课,准备好教具,课堂上把教给学生,让他们四人一小组,去合作演示,充分讨论探索,我在教室里引导学生总结归纳;圆柱体能拼成近似的长方体,长方体的底面积等于圆柱体的底面积,长方体的高就是圆柱的高。因此,长方体的体积就是圆柱的.体积,从而推导出V=sh.学生在课堂中合作十分融洽,我自己也觉得这堂课设计得非常不错,按照备课的程序,接下来就是加深学生对公式的运用、巩固。突然,一双小手高高举起“老师,我有不同方法计算圆柱的体积”我一愣,备课时根本没有考虑到用其它方法;我灵机一动,对,让他说出自己的方法,这位同学用V=ch/2r,即圆柱侧面积的一半乘以底面半径,我当时没有下结论,把这个“球”踢给学生,让他们一起探讨这种说法是否正确;不久学生都异口同声的肯定了。这种新颖的创新思维,课堂上响起了热烈的掌声。

  这堂课后,我的心久久不能平静,学生独特见解、探索,使我看到学生的创新潜力是巨大的,重在教师的开发、引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”在教学中,孩子们的创新意识常常体现在一些奇思妙想中,有的也许细稚,有的也许太“出格,”但这些却是学生创新精思维的闪现,必须珍惜,这样才能培养出具有创新精神的时代新人。在今后的教学中把充足的探究时间与空间交给学生,改变以教师为主体的传统观念,以学生为主体,教师为主导,让学生成为课堂的真正主人。

《圆柱的体积》 2

  这节课我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。

  首先,复习内容简单明了,以旧引新。复习的知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。

  其次,引导学生大胆交流猜想和探索验证。我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。

  再次,课件展示、构建新知。让学生观看课件:是把圆柱的底面平均分成32份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的'物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。

  最后,分层练习,发散思维。在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了练习题是有层次和梯度的。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。解决生活中的问题中,我设计的习题激发学生思考的欲望,压路机、铅笔、柱子这些圆柱体,需要实际测量什么,才能进一步求得圆柱的体积,孩子们大胆思考,结合生活实际找到了答案,体会到“生活中的数学”。在练习时我不断巡视关注学生练习情况,鼓励学生大胆展示,交流各自的想法和做法。对出现的错误作为教师指导的课程资源,强化孩子对圆柱体积知识点的深化和理解。

《圆柱的体积》 3

  今天教学“圆柱体的体积”。接受昨天学生提出的“只学不会的”学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?

  面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的'推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的方法”,谁知道这个“积极分子”不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片( ),分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:“高迈, 给大家解释一下,圆片是什么?圆片的个数又是什么?”“圆片就是圆柱的底面积,圆片的个数就是圆柱的高”。话音刚落,掌声响了起来……。

  这种推导圆柱体体积的计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为“把圆柱体进行等分转化成长方体体积来推导”做铺垫的。谁曾向,这种用“堆”的过程来说明“底面积×高”计算圆柱体体积的道理,实际是“积分”思想,这是要到中学才学习的,学生不好理解的,竟然跑到“预想方法”之前了。真是“计划不如变化快啊”。课堂上的“精彩总是不期而至”啊。试想,如果,刚开始他举手,我就像以往一样“压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。

《圆柱的体积》 4

  一、摆脱情境困扰,追求简单高效

  圆柱的体积教学是小学几何知识的重头戏,教学这节课时,我首先搜集了网上的大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用创设情景,由圆柱体水杯装水,引出圆柱体,再由圆柱体水的体积引出圆柱体体积的求法。板书“圆柱的体积”课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。

  二、建立切拼表象,渗透极限思想

  学生进行数学探究时,为了让学生充分体会,我把操作的机会给了学生。让学生分组试验探究,接着再结合多媒体演示让学生感受,把圆柱的'底面分的份数越多,切开后拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。我使用了—————把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程。让学生一目了然。

  三、练习层层递进,弱化繁琐计算

  为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:

  1、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  2、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2 h。

  3、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2 h。

  4、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2 h。

  在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。

《圆柱的体积》 5

  本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的`教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

  反思不足:

  1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。

  2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。

  3、数学要应用于生活,应该多出些有关生活实际的练习题。

《圆柱的体积》 6

  《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的'计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、教学要达到三个目的

  一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。

  二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。

  三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。

《圆柱的体积》 7

  圆柱的体积

  在这节课学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的`哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.,学习效果还可以。

  圆柱的体积练习课

  本节的练习,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识经验解决新的问题,在新旧知识的联系上,使学生想象合理、联系有方。

《圆柱的体积》 8

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

  一、让学生在现实情境中体验和理解数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的'体积问题,可以怎么办?采用小组讨论交流的形式。有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方

  体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。

  三、建立切拼表象,渗透极限思想

  学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,很遗憾。

《圆柱的体积》 9

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。从本节课教学目标的达成来看,较好地体现了以下几方面:

  一、注重知识之间的内在联系。

  圆柱的体积的导入,先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的,并让学生建立起更深层的空间几何概念。

  二、引导学生经历知识探究的全过程。

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把柱转化成长方体。那么怎样来切割呢?此时利用生活中的`“萝卜”引导学生思考。同学们有了圆面积计算公式推导的经验,经过思考得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。并利用多媒体动画演示,重现推导过程加深学生印象。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程中,认识得以升华(较抽象的认识——公式)。

  三、注重学法指导和数学思想方法的渗透。

  “学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

  本课中还存在很多不足在例如探究过程中没有充分的给予学生说一说、指一指的时间,在引导学生思考已知圆柱底面半径(r)和高(h)、已知圆柱底面直径(d)和高(h)、已知圆柱底面周长(c)和高(h)三种情况时,教师引导过多,应给予学生更充分的思考空间,让其考虑如果没有底面积,知道哪个条件也可以求圆柱体积。最后,在练习中缺少反馈,学生做完练习后,应及时做到直观反馈,总结优缺点,指导学生做题。

《圆柱的体积》 10

  在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的.问题,变书本知识为生活中的知识。

  本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。

  但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。

  总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。

《圆柱的体积》 11

  “圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。

  课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

  展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。

  练习安排注重密切联系生活实际,让学生运用自己刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的.身边,数学对于了解周围世界和解决实际问题是非常有作用的。

  教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。

《圆柱的体积》 12

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的'问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

《圆柱的体积》 13

  本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我来谈谈自己的一些反思。

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的.环境氛围。在推导圆柱体积公式过程时,因为学校没有提供学具,所以我只能先让学生展开空间想象,结合圆面积的推导过程,借助课件一一展示推导过程。让学生观察发现把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。

  3、练习时,形式多样,层层递进

  例题的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时考虑怎样才能让学生用最短的时间完成不同类型的题目。

  (1)、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  (2)、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  (3)、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2) 2h。

  (4)、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2) 2h。

  (5)、已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2) 2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法。另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。不足之处

  本想给学生准备学具,亲自动手操作圆柱体体积的推导过程,无奈学校没有学具,所以只能让孩子借助圆面积的推导过程展开想象,然后借助课件展示圆柱体积的推导过程,可能对一些学困生的理解还有困难。

《圆柱的体积》 14

  新课程观强调:

  教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。

  [片段一]

  师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1。5米,它的体积是多少?

  由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

  1.5米=150厘米20×1150=3000(立方厘米)

  师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

  ①20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)

  ②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)

  师:为什么会出现三种结果?

  经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

  [片断二]

  巩固与应用阶段,我将教材练习二中的一个填表题进行了加工组合呈现给学生这样一个表格。

  学生填表后,师:观察前两组数据,你想说什么?

  学生独立思考后再小组交流,最后汇报。

  生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

  生2:两个圆柱的高相等,底面积越大,体积就越大。

  师:观察后两组数据,你想说什么?

  有了前面的基础,学生很容易说出了后两组的关系。

  学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。

  [片段三]

  教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

  学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。

  师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

  [ ]

  精心研究教材是用好教材的基础

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的.结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

  落实课标理念是用好教材的关键

  能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

  学生获得发展是用好教材的标准

  有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

《圆柱的体积》 15

  在教研组评课的时候,程老师说过这样几句话,我总结如下:

  1、这节课讲的是什么?

  2、学习这些知识为了什么?

  3、这节课讲给谁?学习这些知识的学生处在什么水平?

  从这几个点反思了自己的本节课:

  一、这节课讲得是什么?

  “是什么”的问题我的理解是理清楚本节课的教学内容,教学目标和重难点,教师要做到心中有数。

  在备课时教师首先要关注教材,尊重教材,尽自己最大的力量认识理解教材的编写意图,理解教材所传递出来的信息。同时教师在阅读教材时要清楚教学内容在数学知识体系中的作用,对前面学习内容的延续,对后面学习内容有什么作用。

  前面已经学习了“长方体、正方体”立体图形体积的计算,圆柱体积的学习是学生已有知识的延续,同时为后面圆锥体积的学习做好了铺垫和准备。在整个立体图形的学习中起着承前启后的作用。

  本节课重点是让学生理解并掌握圆柱体积公式,并能够熟练应用计算,难点是让学生经历圆柱体积公式的推导过程。

  二、将这节课是为了什么?

  数学来源于生活,有应用于生活,生活中处处有数学,学习数学知识的目的就是为了应用。那么本节课所学的知识就是为了计算一些圆柱体积的大小,这是这节课的目的所在。

  三、这节课讲给谁?学生的水平。

  这一点就是提醒我们在备课时,充分的备学生,在充分理解教材的基础上。再重新放空自己,把自己摆在学生的位置,重新学习这部分知识。以学生的姿态来备课,读懂学生是上好课的有力保证。

  “圆柱体积公式的推导”是在学生学习了圆柱的特征、表面积计算以及“长方体的体积”“正方体体积”等相关立体图形的基础上教学的,学生拥有继续学习的旧知识和经验,即:

  1、知识铺垫:学生知道“体积”的含义及计算体积的方法;

  2、经验铺垫:在研究圆的面积时,采用“割补转化”的方法,渗透了一种探究学习的思想方法;

  四、反思本课的落实情况

  导入部分,先复习了“圆柱”的特征,然后通过解读课题,复习了“体积”的概念,自然的引出“我们学习过哪些图形的.体积公式”复习了长方体正方体的体积如何计算,并重点分析了立体图形的统一公式,说明二者的体积与“底面积”和“高”相关。从而创设问题情境,引导学生运用已有的生活经验和旧知,制造认知冲突,形成了“任务驱动”的探索氛围。

  探究部分,为学生提供了观察思考及交流讨论的平台,由于教具的限制,没有让学生充分的进行动手操作。这比较遗憾。通过多媒体演示让学生在观察中逐步经历计算公式的推导结果,并发展学生的空间观念。

  练习环节安排注重练习生活实际,让学生应用自己推导出的计算公式解决引入环节中的两个问题,第一个问题数据提供,直接利用公式进行计算,同时在巩固两个计算。之后再让学生解决老师手中的圆柱体积,这时需要让学生测量相关数据。让学生认识数学的价值,切实体验到数学其实就在我们身边。并且学生在解决问题的同时推导出了已知半径和直径计算圆柱体积的公式。

  本节课最大的不足就是:学生在练习中教师关注度不够全面。

【《圆柱的体积》 】相关文章:

《圆柱的体积》的 07-28

圆柱的体积 08-02

《圆柱的体积》 01-08

圆柱的体积 05-08

《圆柱的体积》 07-30

小学《圆柱的体积》数学 11-04

《圆柱体积》 03-31

圆柱体积的 11-30

圆柱的体积 15篇04-17

圆柱的体积 (15篇)04-18

Baidu
map