首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >比例的意义

比例的意义

时间:2023-03-15 11:04:55 我要投稿

比例的意义 15篇

  身为一名到岗不久的老师,课堂教学是重要的工作之一,写 可以很好的把我们的教学记录下来, 应该怎么写呢?下面是小编收集整理的比例的意义 ,欢迎阅读与收藏。

比例的意义
15篇

比例的意义 1

  我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。

  生活是数学知识的源泉,正反比例是来源于生活的。

  其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习

  课上学生基本能够正确判断,说理也较清楚。

  教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的.时间获得最大的学习效益的方法都是成功的,都是有价值的。

比例的意义 2

  首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组(一)题组(二)对反比例函数的三种表示方法进行巩固和熟悉。

  例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

  题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的.趋势。

  虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。

比例的意义 3

  正反比例应用题从教参上看主要是分三个层次教学:1、正比例应用题的教学,2、反比例应用题的教学,3、正反比例应用题解答方法的总结。重点应放在如何判断每题中的两个量是否成比例,成什么比例上。下面我结合自己本节课的教学谈一谈我自己的体会。

  成功之处:

  1、开头的复习比较的设计比较到位,层次分明,时间分配得当。

  2、总结解比例的方法时能鼓励学生去体验,通过小组的`方式去总结解正反比例应用题的方法。

  不足之处:

  1、例题教学时应让学生讨论分析,多花时间研究数量关系式。

  2、教师在教学时不能按步就搬,应能及时抓住学生的闪光点,及进表扬,充分让学生表现自己。

  3、改造例1时让学生宏观上思考与例1的区别,这样可让学生更深层次地理解比例应用题的解题步骤。

  4、练习题中的表述要清,练习的亮点没有得到很好的拓展。

比例的意义 4

  接到学期公开课任务的当天晚上就开始着手准备,查找相关资料,做到心中有数,怕自己做的不好,很是紧张。第二天先写好了常规的教学设计,也算是雏形已定。我觉得对我自己来说,教学设计一定要先把握好教学目标的分析,所以我参照要求设定了合适的教学目标。初稿是按照流水帐形式,和平时上课一样,按照复习引入、讲授新课、分析例题、练习巩固、归纳小结、布置作业等程序进行。初稿交给指导老师后,孟主任建议其中的复习引入环节做大的调整,对习题的设置也给出了指导建议,修改后流畅了很多。随后设计了学卷,给董老师把关指导。因为我定位于层次相对高的学生,在习题的数量设置、坡度设置上不合理,难度不适宜。有些题目过于简单,毫无价值;而有些则过难,在课堂上会耽误很多时间,于是想到变式训练,在题目设置的顺序和难度上下功夫。

  在第一次试讲后,发现引入部分太拖沓,用了10分钟时间才归纳得出反比例函数的定义和形式,随后的两个针对定义设计的稍难的题目就直接跨过到待定系数法求反比例函数解析式,课程结束得比较匆忙。

  在备课组老师的指导下,重新设置了题目的数量,第4题中原来为了复习设置了五个小问题,在函数概念上纠缠过多,反而引起学生理解困难;把引入部分第5题的练习由原来的四个减少到两个,剩下了的两个留在第7题作为练习。由于函数解析式的形式通过归纳与对比形成新知识并不需要太多雷同的题目,这样引入时间大大减少,而列关系式的题目难度并不大,把第一次的逐题讲解变成了答案展示,节约了近10分钟时间。其实开始是对学生的水平不太相信,怕题目过难,学生不能迅速完成,时间证明,引入部分的题目难度不大,学生能迅速完成,而我还是按照自己的想法进行第一次的试讲,所以时间显得很紧张,没有顾及学生的实际水平。

  第3题的最后一问“反比例函数kxy=还可以表示成什么的形式” ,这个问题显得很宽泛,学生也无从下手,不知从哪个角度入手,也不明白老师想问的`问题到底是什么,这是一个无效的设计。后来结合要求,丽涛说新课只要求学生能辨认出伪装后的反比例函数或者说经过等价变形的反比例函数的形式,因此问题改成了以选择题的形式出现,这样学生也有了一定的目标范围,也不会因为问题设置不合理而耽误过多时间。当他能正确选择出答案时,也说明他知道了这几个答案是由标准形式经历了怎么样的等价变形而得到的。

  第6题目更改设计后是使得教学过程流畅了很多且节约了时间,但是在实际上课过程中,对这个问题忽略了,认为学生能直接选择出答案就是他们已经牢记了这些形式。此处应该在学生选择了正确答案后,教师最好再花2分钟的时间讲解下变形过程,同时也回顾了分式的乘法、负指数的意义等知识,加深知识点之间的联系;或者让学生口头回答他选择的理由。总之在这里应该停顿回顾下这个重要的知识点,以加深对新知识的印象,及时总结归纳反比例函数形式的特点,要能突破这个学生理解的难点,要不会对第8题的影响就比较大。

  第5题在讲解过程中花了过多的时间,说明前面kxy=及其变形讲解不透彻。k值(反比例系数)不能顺利求出,表示y是的x反比例函数疑惑颇多,讲解费时,在成反比例和反比例函数之间有混淆。经过对比板书,学生明白了题目要求的是y与x成反比例 ,为了巩固对反比例概念的理解,增加了练习6。

  在讲解用待定系数法求反比例函数的解析式时,原来只设计了讲解例题,随后的巩固练习与例题几乎完全相同,只是改变了数据而已,这样的题目设计对学生来说是很不愿意接受的,但是用待定系数法求函数的解析式是一个重要的方法,学生必须动手写一次,难度又不能加大太多,怎么办呢?就结合小组活动,让学生动起来。虽然多了考察内容,但是都是最基本的内容,难度没有加大太多,学生也能按照顺序顺利解决问题

  课堂归纳小结第一次设计的时候,就是问一句“本节课你有什么收获?”,对于这些宽泛的问题,学生一般都不知怎么回答,所以要紧扣定义,引导学生。这样,学生知道了本节课的内容,也明白了空白处就是本节课的重点要掌握的部分了。

  在讲课的过程中,与学生的互动较少,没有充分调动起学生的积极性,自己也有点紧张,学生也有点紧张。 在数次不停修改教学设计的过程中,自己的认识也在不断提高,题目设计水平也有了提高,指导老师,还有我的同事都给了我不少的建议和帮助,才使我的设计更臻完善,在此也感谢他们!

比例的意义 5

  教学过程:

  一.复习旧知、铺垫引新

  师:上一节课我们一起学习了正比例的意义,那么怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  生:两种相关联的量,一种量变化另一种量也随着变化,当这两种量中相对应量的比的比值一定,也就是商一定时,我们就称这两种量是成正比例的量。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,可以用式子y/x=k(一定)。

  教者板书用字母表示的式子。

  师:说得真好!×××你能再复述一遍吗?

  生2复述。

  师:那么同学们能判断下面两种量是否成正比例吗?为什么?

  出示:

  (1)时间一定,行驶的路程和速度

  (2)除数一定,被除数和商

  生1:时间一定,行驶的路程和速度成正比例。因为行驶的路程/速度=时间(一定)。

  生2:除数一定,被除数和商成正比例。因为被除数/商=除数(一定).

  师:在日常生活中我们经常遇到单价、数量和总价这三种量,你能说出单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  生1:这三种量有这样三种关系:单价×数量=总价、总价÷数量=单价、总价÷单价=数量。当单价一定时,总价和数量成正比例;当数量一定时,总价和单价成正比例。

  师:说得真好!如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  二.交流讨论、探究新知

  出示例3的表格。

  师:这里有一组信息,同学们仔细看一看这里提供了哪些信息?指名一生回答。

  生:这里告诉我们用60元钱去买本子时的几种可能发生的一些情况。

  师:嗯!请同学们围绕这样几个问题展开讨论:(出示讨论提纲)

  (1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  待学生讨论片刻之后师提问:谁来将刚才讨论的结果跟大家做个交流。

  生:表中列举了单价和数量两种相关联的量,一个量扩大另一个量反而缩小,一个量缩小另一个量反而扩大,在变化的过程中相对应的量的乘积始终是60。我想这两种量之间就是成反比例的关系。

  师:大家同意他的观点吗?

  生齐:同意!

  师:与正比例相比,大家觉得这样两种量有什么特征呢?

  生:首先要是相关联的量,一个量变化另一个量也要跟着变化。成正比例的两个量在变化过程中比值不变,而这里的两种量在变化的过程中是积不变。

  师:那我们就可以说,这两种量具有什么样的关系呢?

  生:这两种量的关系就是反比例关系。

  (教者根据学生的回答作相应的板书)

  师:真会观察思考!

  投影出示“试一试”

  师:你能根据表中已有的信息将表填写完整吗?

  生:每天运18吨,需要运4天;每天运12吨,需要运6天;每天运9吨,需要运8天。

  师:为什么这样填?

  生:每天运的吨数乘以时间要等于总吨数72吨。

  师:根据表中数据,你能回答表格下面的问题吗?

  生1:相对应的两个数的乘积是72。

  生2:这个成绩表示的是工地要运水泥的总吨数,它们之间的关系可以用式子:每天运的吨数×天数=总吨数。

  生3:每天运的吨数和需要的天数成反比例。因为每天运的吨数和需要的天数是相关联的两种量,其中一个量变化,另一个量也随着变化。在变化过程中,相对应的数量的乘积总是不变,都是72。所以,这道题中的两种量是成反比例的关系,每天运的吨数和需要的天数是成反比例的.量。

  师:仔细观察刚才研究的例3和“试一试”,它们有哪些共同的地方呢?

  生1:它们提供的两种量都是相关联的量。一种量扩大,另一种量缩小;一种量缩小,另一种量扩大。

  生2:这两道题里面的两种量的乘积都不变的。第一道题中两种量的乘积都是60,第二道题中的两种量的乘积都是72.

  师:反比例的关系也可以像正比例一样用字母式子把它们的关系表示出来吗?

  生:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用:x×y =k(一定)来表示。

  三、巩固应用 、拓展延升

  1.师:请大家把书翻到第65页,“练一练”中每袋糖果的粒数和装的袋数成反比例吗?为什么?

  生:这道题中的每袋糖果的粒数和装的袋数成反比例。因为:每袋糖果的粒数和装的袋数是相关联的两重量,而且每袋糖果的粒数和装的袋数的乘积都是300。

  师:你认为要判断两种量是否成反比例,要从哪几个方面来考虑。

  生:一要看这两种量是否相关联,二要看相关联的两种量的乘积是否始终不变。

  2.师:请大家把书翻到第68页,看书上的第六题。请大家写出几组对应的每本页数和装订本数的乘积,再比较乘积的大小。(稍等片刻)

  师:谁来汇报一下你写的几组乘积,它们有什么关系?

  生:我算了这样几组:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它们的成绩相等,都等于900。

  师:这个乘积表示的是什么呢?

  生1:这个乘积表示的是纸的总页数。

  生2:这个乘积表示的就是用来装订练习本的纸的总页数。

  师:每本练习本的页数和装订的本数成反比例吗?为什么?

  生:成反比例。因为每本练习本的页数和装订的本数是相关联的两种量,一种量变化的时候,另一种量也随着变化,在变化的过程中,每本练习本的页数和装订的本数的乘积保持不变。所以,每本练习本的页数和装订的本数成反比例关系。

  3.师:观察第7题中的两种量,每天装配的数量和需要的时间成反比例吗?

  生:每天装配的数量和需要的时间成反比例。

  师:你是怎样判断的?

  生:每天装配的数量和需要的时间是两种相关联的量,并且这两种相关联的量中相对应的量的积始终不变都是1600。所以每天装配的数量和需要的时间成反比例。

  4.师:下面我们一起看第8题,首先请大家根据方格图中的长方形将表格填写完整,并思考表格下面两个问题。

  稍等片刻后,师:通过表格的填写和研究,你发现什么了吗?

  生:我发现长方形的面积一定,长方形的长和宽成反比例。长方形的周长一定,长与宽不成反比例。

  师:为什么呢?

  生:长方形的长和宽是相关联的两种量,当面积一定时,长和宽的乘积是一定的,所以长方形的面积一定时,长方形的长和宽成反比例。而周长一定时,长和宽的和是一定的,积并不一定,所以长方形的周长一定,长与宽不成反比例。

  5.师:这里有一道题,同学们判断一下。

  100÷x=y,那么x和y成什么比例?为什么?

  小组交流讨论。

  师:同学们有讨论出什么结论了吗?

  生1:我觉得他不成什么比例。

  师:为什么呢?

  生1迟疑片刻后:看了不像。

  师:其他同学有不同意见吗?

  生2:我觉得这里的x和y两个量成反比例。

  师:能说说理由吗?

  生:我们可以将这个等式的两边同时乘以x,等式变为xy=100,这说明x和y的乘积是一定的,那么,x和y成反比例。

  部分学生不约而同鼓起掌。

  师咨询生1:同意他的观点吗?

  生1点头示意。

  四、课尾盘点、总结反思

  师:这节课你学会了什么?你有哪些收获?还有哪些疑问?

  生1:我知道了两个相关联的量,一种量变化另一种量也随着变化,如果两种量中相对应的量的乘积是一定的,我们就说这两种量成反比例关系,这两个量就是反比例关系。

  生2:在判断时,我们应该运用学过的知识,灵活判断,而不能看表面,比如老师出的最后一道题。

  师:同学们说得真好,希望同学们课后能利用时间找一找生活中还有哪些量是成反比例的量,以帮助自己更好的认识反比例。

  

  本节课内容比较抽象、难懂,学生掌握有一定得困难。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。

  一、创设情境,激发求知欲望。

  我从学生身边发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知较好的创设了现实背景。

  二、深入探究,理解涵义

  在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。

  三、比较猜想,归纳规律

  我考虑到例题比较相近,因此要注意学习方式必须加以改变。因此我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。

比例的意义 6

  比例的意义是在学生对比的意义、性质和比值的意义以及求比值的方法有了较充分认识的基础上进一步学习的。掌握这部知识将为进一步学习正、反比例的意义,用比例的方法解应用题奠定了坚实的基础。

  由于经过了很长的时间,学生的知识有了一定的遗忘,而本课的学习是建立了上册比的基础知识上学习的,所以在教学前,我先给学生复习了比的知识。什么叫比?什么是比值?怎样求比值?怎样化简比?而组成比例的两个比比值相等,所以求比值就变得非常重要,我就让学生练习了几题求比值的习题,既复习了以前的知识,又为本节课的学习提供了很好的帮助。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:

  一、创造有效学习情境,激发学习主动性

  在学习比例的意义时,我先让学生根据要求亲自动手写人以两个数的比,并求出比值。然后,分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的`核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:1、判断。2、组比例。最后通过小组讨论:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。

  二、变“教教材”为“用教材——拓宽教材”

  教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。

  教后反思这节课,我觉得是突出了常态下如何扎实有效的组织学生学好这一节课的内容,使数学学习与现实生活紧密联系,使学生认识到我们的数学学习是有用的,它能解决我们实际生活中的很多问题,从而提高学生学习积极性,从学生掌握知识、课堂参与情况来看,整节课的设计还是比较适合学生的思维发展。在结构上,注重了前后呼应,使整堂课也显得比较紧凑,效果不错。但是学生的动脑方面还不够。

比例的意义 7

  “正比例的意义”教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例知识是学习反比例知识的基础,因此,使孩子们正确的理解正比例的意义是本节课的重点,让学生能正确判断两个量是不是正比例是本节课的难点,特别是如何让学困生掌握概念、判断时明确的阐述理由尤为重要。在实际教学中,我注意了以下几点:

  1、联系生活,从生活中引入:

  数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材:路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。特别是=单价,单价就是“比值”学生比较好理解,由此可以引导同学们学习其它两个量的关系。

  2、在观察中思考

  小学生学习数学是一个思考的过程,“思考”是孩子们学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让孩子们通过观察两个相关联的量,思考他们之间的特征,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。

  3、在合作中感悟

  新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的'思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们采取小组合作的方式自学,在小组里进行合作探究,做到:孩子们自己能学的自己学,自己能做的自己做,培养合作互动的精神。特别是区别“正方形的周长与边长”“正方形的面积与边长”是否成正比例的时候,让学生讨论,其实小组讨论中仍然是成绩优秀的学生是发言人,而学困生主要是听,他们的思维还没到能辨析的程度,只是模糊的有点感觉,“可能成吧……”如果真能在小组合作中学会倾听同学的发言,这也会让学困生很受益的。

  4、在练习中巩固提升

  为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生自己研究圆的半径和圆有什么关系,让孩子们在巩固本节课知识的同时,学会通过研究会判断,同时孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。

  可能自己在平时的教学中没有完全放手让学生自己讨论自己总结发言,所以在发言的时候学生还不能完全放开,显得有点拘谨,但通过后面的练习,使我意识认识到学生对于正比例的意义印象非常深刻,而原因正是上课方式的改变,所以在今后的教学中应多给学生自学研究讨论的机会,锻炼学生。

比例的意义 8

  《比例的意义》是一节相对简单的概念课,学生对“比值相等的两个比可以组成比例”比较容易理解。因此在导学案的设计上,我遵循了层层递进的原则,由“国旗”这一典型的事例引入,通过计算长与宽的比值,找出了相等的式子,从而引出比例的概念,并让学生尝试应用概念,从不同角度(如宽与宽、长与长)的两个比找到不同的比例,拓宽学生的思维。之后变换各种题型,进行了大量的练习。

  但在教学中我感到有几点不足之处:

  第一,是在“拓展”环节。在学生利用长与宽的比值相等得到比例后,提出问题“在四面国旗的尺寸中,你还能找出哪些比组成比例?”旨在让学生应用比例的概念,换个角度得到“长与长、宽与宽”的两个比也能组成比例,但是在实际的操作过程中,学生对这一问法没有理解,有的是自己找两个比组成比例,有的无从下手,不知道在说什么,感觉教学进行的有点不顺畅,应该教师先引着学生说出其中的一个,再让学生拓展其他的例子,会好一些。

  第二,是在设计的流程上,有的`教师提出,问题导学的实质是“有问而导”,这些问题都是老师设计出来的,学生没有参与,也就是说,问题应该是学生有感而提的,教师在此一步一步让学生在设计中完成学习任务,应该改变这样的方式。

  由此,我想到了,无论怎样设计,关键在于学生的参与,在于学生发自内心的想参与数学学习的热情,这是检验一节好课的标准。

比例的意义 9

  比例的意义 比例的意义是在学生掌握了比的意义、比的各部分名称、比值以及比与分数、除法之间关系等有关知识的基础上进行教学的。

  成功之处:

  1、关注不同角度,深刻体会比例的意义。在教学中通过出示学生比较熟悉的大小不同的国旗,让学生计算每面国旗长与宽的比值,5:10/3=3/2(1.5)15:10=3/2(1.5)60:40=3/2(1.5)2.4:1.6=3/2(1.5)由此发现每面国旗的比值相等。此时教师教师指出可以写成这样的等式:5:10/3=15:10 60:40=15:10 60:40=15:10并指出像这样表示两个比相等的式子叫做比例,从而得出比例的意义。通过计算比值让学生判断两个比能否成比例的关键就是是否比值相等。上面的例子是根据每面国旗的.长与宽的比得出组成比例的式子,然后让学生从宽与长的比、长之比与它们的宽之比也可以组成比例,鼓励学生打开思路,从不同角度去找,加深对比例意义的认识。

  2.加强知识之间的联系,弄清比例与比之间的区别。在教学中,首先复习了关于比的知识,让学生通过回忆已学知识,什么叫做比,比的各部分名称,怎样求比值,比与分数、除法之间的关系,建立起与今天所学知识的联系。在教学完比例的意义后,让学生对比比和比例的区别也就水到渠成了。不足之处:学生对于组成比例的两个比的前项位置与后项位置存在模糊现象,导致组成比例的式子不符合要求。再教设计:注重学生在哪个知识点上存在错误,力求尽量避免。

比例的意义 10

  由于新教材把“比”的内容前移至十一册,学生难免会有遗忘和生疏,所以在教学时我适当增加“比”的复习分量,除了教材上的复习内容,还多加了几道复习题。

  新授例1后得到两个相等比80:2=200:5,此时,应当再次指出:这个等式和复习题后面列出的等式都是比例。那么什么叫做比例呢?

  引导学生观察归纳,一般都可以根据几个式子共有的特征得出结论。虽然班上有些学生自己得出的结论,不够严密,我还是加以肯定和鼓励。那么在此基础上引导学生再来讨论“两个比能否组成比例,主要是看什么?”这样的问题,自然会水到渠成。

  这样不仅加强知识间的联系,而且减缓学生认知过程的坡度,学生在逐步深入理解“比”的基础上再去学习“比例”的知识,会轻松得多。

  《比例的基本性质》的`推导是这节课的重点,也是难点。但是我们教学时不是用数学证明的方法得到比例的基本性质的,而是引导学生研究具体比例的外项积和内项积的关系,在此基础上归纳得出比例的基本性质。为了使归纳的结论具有说明力,我让学生在草稿本上任意写一个比例,并研究两内项积与两外项积有怎样的关系,再分小组讨论。

  让学生通过自己的研究观察得出,不论怎样的比例,它的外项与内项积都相等,并让学生自己用字母表示出来。

  这节课学生不仅掌握了一个“基本性质”,更重要的是向学生渗透了研究问题的方法,学生的主体意识得以培养和发挥。

比例的意义 11

  《反比例的意义》一课是北师大版六年级下册教学内容,它是在教学《正比例的意义》的基础上的认识,因此在教学设计上,分为三步:

  第一,先从复习正比例开始,复习成正比例的条件和特点。通过"说一说成正比例的两个量是怎样变化"和"判断两个量是否成正比例"的练习,让学生回顾"一种量随着另一种量的变化而相应变化,两种量之间的比值一定。"的正比例的意义。然后引入新课题——反比例。

  (从课堂的效果看,感觉在这个环节上的设计还是比较传统化,学生的回答中规中矩,学生的积极性和投入性不是很高,课堂气氛稍显沉闷。课后我想如果这样设计:给出路程,速度,时间,问怎样组合才能符合正比例的要求 接着小结,"既然有正比例,那就有…"(让学生说出"反比例")从而引出课题《反比例》,引出课题后,让学生先根据正比例的意义猜一猜什么是反比例,不管学生猜的对与错,让学生初步感知反比例,这样会不会更能调动起学生的积极性和学生的发散思维,为后面更好的学习作铺垫 )

  第二,通过例2与例3两个情境(如果按教材的安排先讲例1,觉得会增加难度,让学生不知所以,于是这节课暂不讲例1),让学生了解反比例的意义以及特点,A,路程一定,速度与时间的关系;B,果汁总量一定,分的杯数与每杯的`果汁量的关系。然后让学生自己总结出反比例的意义和成反比例的条件:一种量变化,另一种量也随着相反变化,在变化过程中,两种量的乘积一定。

  (这个环节的设计,我采用了与教学正比例时同样的教学程序。考虑到上一节课的研究方法学生已经有了一定的认识,所以采取了放手的形式,引导后就直接把研究和讨论的要求给学生,让学生仿照正比例的学习再次的研究反比例的意义。但在教学过程中,感觉还是扶着学生走,有点放不开。)

  第三,在学生理解反比例意义的基础上,让学生通过练习尝试判断给出的两种量,是否成反比例。

  1,在教学的过程中,能注意生活与实际的相结合,通过生活中的两个情境引导学生理解反比例,让学生容易上手,也容易去判断。

  2,在提问的方面,基本兼顾了优生和中下生,但感觉面不够广。学生的回答很完整,而且也有条理性,感觉是平常课堂上要求的结果反映。

  3,在教学的设计上,条理是清晰的,思路是明确的,但感觉还是有点不够活。如果让学生自己来设计问题,让学生互相提问题,编问题,让学生自己来探索,自己去提问,自己去发现,我想,这样可能会更好的调动起学生的积极性,发挥学生的质疑能力和创造力,效果一定会更好。

比例的意义 12

  比例的意义和基本性质,是在学生学习了“比”后进行教学的,导入新课时出示三面国旗,并通过求长和宽比值,引导学生观察,然后提问学生发现什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,在判断两个比能否组成比例时,关键看这两个比的比值是否相等。

  为强化理解在这时我安排了随堂练习:

  1、写出比值是1.5的比,并组成比例。

  2、练习八第一题。

  在比例的基本性质教学过程中我是分三步进行的:

  第一步,区别比和比例,提出问题:比和比例有什么联系和区别?学生回答后,教学比例各部分的名称,同时提示比例还可以写成分数的形式,并由学生自己标出所写的'内项、外项。

  第二步,通过学生自己计算内项的积和外项的积,发现比例的基本性质并加以概括。

  让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,

  课堂小结:判断两个比能否组成比例有两种方法:

  1、求比值。

  2、利用比例的基本性质。

  课堂上安排了反馈练习,进一步加深学生对比例性质的认识与掌握。

  在整个教学过程中,重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,

  第三步,为了进一步加深对比例的基本性质的理解,我精心设计了由易到难得两种类型练习。

比例的意义 13

  《成反比例的量》是在学习《成正比例的量》之后学习的。为了吸取上次课的教学经验,我改变了教学方法,目是调动学生学习的兴趣,培养学生自主学习的能力。

  一、复习旧知,引入新知。

  上课时,以已学过的正比例的意义为切入点,让学生们先说一说成正比例的量的意义,并要求说出它的特征来;让学生们说一说生活中有哪些成正比例的量,再说说你是如何来判断这两个量是否成正比例关系。这样既复习了旧知,又为学习新的知识做好了一定的铺垫。再出示课题:成反比例的量。让学生们自己提出疑问:如成正比例的量是一个量增加,另一个量也增加,一个量减少,另一个量减少,那成反比例的量是不是一个增加,另一个量就减少呢?成正比例的两个量是比值一定,那成反比例的量是什么一定呢?

  二、自主探究,学习新知。

  有了一些疑问,相信学生们会急着想要解决呢!我就顺势提出让学生们自己看书来寻找这些答案,然后再进行交流。在交流的过程中,让学生对别人的发言及时补充和发表自己看法,这样既学会了思考,又培养了学生学会倾听的学习习惯。接着对成正比例的`量和成反比例的量进行比较,找到新旧知识之间的联系与区别。在整个自主学习的过程中,学生们很好地利用已有知识和经验的迁移,理解了反比例的意义,不仅让学生获得了数学知识,还增强了自主学习数学的信心,同时还培养了学生自主获取新知识的能力。

  这课学生自主学习的积极性都很高,学习效果较好,为了鼓励学生学习的积极和主动性,一是人人能自主积极参加新知的探索与学习;二是大家能充分合作,发挥出了各自的能力;三是大家学会了如何利用旧知识来学习新知识的方法;四是很多同学通过自主学习获得知识后,有一种快乐感和成就感。

比例的意义 14

  在学习比例的意义时,我让学生先计算两组比的比值,再比较两个比的比值,比较后让学生自己写出两个比值相等的比,在这个过程中,让学生体会到再比的家族里,比值相等的现象普遍存在,学生自己能体会“比例的意义”,学生学习轻松自在,概念的理解顺其自然。在教学“比例的基本性质”时,也是让学生自己选择例子直接告诉学生把两个外项、两个内项分别相乘,然后发现规律,看是自主发现,其实学生还是一种接受性学习,朝着教师指的方向走,缺乏一定的挑战性,后来发现别人教学时是提供四个数据,让学生写出两个得数相等的式子,这样探索发现规律,并举例验证自己的发现,在探索中让学生体会到归纳法研究的方法,渗透科学研究的态度;同时让学生自己举例研究,使研究材料的随机性大大增强,提高结论的可信度。在这样的探索过程中,学生既有一定的方向,又有不同的思维,学生“跳一跳就能摘到果子”,使探索的问题具有挑战性。想想别人的设计确实高出一筹。因此,在教学中,解决好自主探索与教师适当知道的矛盾显得很重要,有时就能体现不同的'教育理念。

  比例的知识在日常生活中应用比较广泛,如建筑上混凝土的配置、医药上药水的配置、科技上图纸的绘画等都要用到比例,但是学生所能体会的只是一个比,所以课中安排学生说说“在日常生活中,你见过哪些比例?”学生举例后,由学生就提出“按药粉与水的比为1∶100”中“1∶100” 只是一个比,而非比例,这时引导学生讨论,当要配置的药水的重量发生变化的时候所需要的药粉和水的重量就会发生相应的变化,但是药粉和水的比总是1∶100,所以这个比例就是“药粉∶水=1∶100”,这就是一个比例,通过这样的引导让学生明白“按比例配置”中的“比例”意义,把数学与生活相联系,学数学用数学。

比例的意义 15

  《正比例的意义》是在学生学习了比和比例的基础上进行教学的,教学的重点与难点都是要让学生理解正比例的意义,并初步学会判断两种相关联的量是不是成正比例关系,同时向学生渗透初步的函数思想。对于小学生来说,这部分内容还比较抽象,在理解上具有一定难度。因此,我教学本课的主导思想是:让学生在观察、比较熟悉的数量关系,体验数量的变化规律,进而进行归纳概括,经历由形象到抽象,由具体到一般的抽象思维过程。

  在实际的教学过程中,学生发现两个量之间的变化情况(一个量扩大,另一个量也随着扩大;一个量缩小,另一个量也随着缩小,但是比值不变)并不存在多大难度。关键是让学生把这种规律和正比例的意义建立思维联系,让学生深刻理解比值一定的意义。

  我主要是通过这几个问题在学生观察与思维之间搭建桥梁的:

  1、表中的这些数据可以组成比例吗?请你写出几组比例。

  2、你是怎样正比例中的“正”呢?(一个量扩大,另一个量也扩大;一个量缩小另一个量也缩小,变化趋势是一致的。)

  3、体积和高的比值,也就是底面积为什么不变呢?你能用学过的知识说明吗?【根据比的基本性质,比的前项和后项同时乘或除以相同的数(0除外)比值不变。】

  4、你是怎样理解底面积一定呢?(一定就是指底面积不随着体积和高的变化而变化,也就是说不管体积和高怎样变化,底面积总是一个固定的数。)

  通过对这几个问题的思考和讨论,学生对正比例的意义的理解可能会深刻一些,也就不太容易和后面学习的《反比例的意义》相混淆。

  在后面练习拓展的过程中,我发现有部分学生对比值一定这个概念的理解还不是太深刻。

  比如判断:

  圆的面积和它的半径成不成正比例。学生计算出它们的比值是圆周率乘半径,仍有部分学生认为一个圆的半径是固定不变的,所以它们的比值也是不变的,出就是圆的面积和它的半径正比例。看来学生对比值一定这个概念的理解还是有一定难度的。

  比例的意义 4

  “正比例的意义”教学,是在孩子们掌握了比例的意义和基本性质的基础上进行教学的,着重使孩子们理解正比例的意义。正、反比例知识,内容抽象,孩子们难以接受。学好正比例知识是学习反比例知识的基础。因此,使孩子们正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:

  1、联系生活,从生活中引入:

  数学来源于生活,又服务于生活。关注孩子们已有的生活经验和兴趣,通过现实生活中的.素材引入新课,使抽象的数学知识具有丰富的现实背景,为孩子们的数学学习提供了生动活泼、主动的材料与环境。这样,将孩子们带入轻松愉快的学习环境,创设了良好的教学情境,孩子们及时进入状态,手脑并用,课堂气氛十分活跃,将枯燥的知识形象,具体,孩子们易于接受。

  2、在观察中思考

  小学生学习数学是一个思考的过程,“思考”是孩子们学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让孩子们自己再设计一种情景,并引导孩子们进行观察,从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让所有孩子们在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。

  3、在合作中感悟

  新的数学课程标准提倡:引导孩子们以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导孩子们初步认识了两个相关联的量后,敢于放手让孩子们采取小组合作的方式自学例1,在小组里进行合作探究,做到:孩子们自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。

  4、在练习中巩固提升

  为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让孩子们巩固本节课知识。通过练习,要求逐步提高,孩子们的思维也得到了提高;最后引导孩子们自己对知识进行梳理,培养孩子们的归纳能力,使孩子们进一步掌握了正比例的意义。

【比例的意义 】相关文章:

《比例的意义》 03-06

比例的意义 05-28

《比例的意义》 03-15

《反比例意义》 03-08

比例的意义 (15篇)03-16

《正比例意义》 03-13

《反比例意义》 11-17

反比例意义 01-04

反比例函数的意义 04-05

Baidu
map