- 相关推荐
《双曲线及其标准方程》
作为一名到岗不久的人民教师,我们的任务之一就是课堂教学,对学到的教学技巧,我们可以记录在 中,写 需要注意哪些格式呢?以下是小编精心整理的《双曲线及其标准方程》 ,供大家参考借鉴,希望可以帮助到有需要的朋友。
《双曲线及其标准方程》 1
教学期望:
教学目标:
双曲线是圆锥曲线中最复杂的一种,作为最后一种圆锥曲线学习。
本节课主要内容是:
(1)探求轨迹(双曲线);
(2)学习双曲线概念;
(3)推导双曲线标准方程;
(4)学习通过双曲线标准方程确定焦点的位置、通过已知条件确定双曲线方程的方法——这四个内容类比椭圆学习。通过本节课的学习期望实现以下目标:
在知识技能方面:
(1)能理解并掌握双曲线的定义,了解双曲线的焦点、焦距;
(2)能掌握双曲线的标准方程,能够根据双曲线的标准方程确定焦点的位置;
(3)能根据已知条件求双曲线的标准方程。
在过程与方法方面:
(1)经历双曲线轨迹的探究,培养观察能力和探索发现能力;
(2)在双曲线定义和标准方程的学习过程中培养类比推理能力、归纳能力,体会求轨迹方程过程中数形结合等数学思想方法的运用。
在情感态度方面:
(1)经历双曲线及其标准方程的获得过程,感受数学的对称美和简单美;
(2)通过主动探索,感受探索的乐趣,体会数学的理性和严谨;
(3)经历双曲线定义的获得过程,养成实事求是的科学态度,形成学习数学知识的积极态度
设计思路:本节课课堂教学期望采用学生主体——教师主导的双主模式,首先,复习椭圆的定义,提出问题“将椭圆定义中‘之和’改为‘之差’,轨迹是什么?”,通过拉链动画演示探究双曲线的轨迹,引入课题“双曲线及其标准方程”。其次采用启发式教学法与学生一起探究双曲线的定义,帮助学生深刻理解双曲线定义中“差的绝对值”和“常数大于0小于两定点距离”的条件。再次类比椭圆标准方程的推导过程,给出双曲线的标准方程,同时类比椭圆的标准方程进行理解学习,在此过程让学生总结椭圆和双曲线焦点位置判断和a、b、c关系的不同。最后对知识进行检测巩固,通过例题向学生示范规范解题过程,通过练习检测巩固学生是否突破难点,即通过双曲线的标准方程确定焦点位置和根据条件求双曲线的标准方程。
学生关系:通过活动组织、语言鼓励、正面评价,与学生形成良性互动,调动起学生参与课堂的积极性,把课堂的主体地位还给学生,促使知识生成由学生自主完成。
教学效果反思:
教学期望实现情况:
(1)教学目标:从双曲线定义的探究过程可以看出学生已经理解并掌握双曲线的定义;从课堂检测环节学生的练习情况可以看出学生已经学会通过双曲线的标准方程判断焦点的位置,同时能够根据已知条件求双曲线的标准方程;通过课堂小结环节,可以看出本节课三个教学目标基本实现。
(2)设计思路:课堂知识通过一系列启发式问题让学生自主生成,实现双主模式;从课堂的引入到定义的探究、标准方程的学习以及知识的应用,各个环节均能按照教学设计顺利展开。
(3)学生关系:课堂提出的问题能够启发学生积极的思考,通过语言鼓励、正面评价及热情感染,与学生形成了良性互动,调动起学生参与课堂的积极性,把课堂的'主体地位还给学生,促使知识生成由学生自主完成。
教学成功之处:
教学方法上:本节课采用启发探究式、互动式教学法进行教学,体现了认知心理学中“突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段”的基本理论。
学习主体上:本节课为学生的主动参与提供了充分的时间和空间,让不同程度的学生勇于发表自己的各种观点,无论对错,凡是学生能够自己学习的、观察的、说明的、思考探究的,尽量都放手让给学生去做、去活动、去完成,调动起了学生学习积极性,拉近了师生距离,提高了知识的可接受度,让学生体会到了自己是学习的主体。从课堂上学生的表现来看,真正实现了将课本的知识、老师的知识转化为学生自己的知识。
学法指导上:本节课讲解与探究相结合、交流与练习互穿插,采用启发式探究法让学生始终处于问题探索研究状态,激情引趣。在和谐、愉悦的环境中给予学生适当的引导,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题。
学生评价上:本节课从操作能力、概括能力、学习兴趣、情绪情感方面对学习效果进行过程评价。对出现问题的学生,能够及时指出其可取之处并耐心引导,培养学生勇于面对挫折,持之以恒地探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,因此本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛相对活跃。
教学不足之处与再设计:
1.课程导入环节
不足之处:通过动画演示完双曲线的图形后没有向学生强调两支曲线合起来叫双曲线,左边一支叫双曲线左支,右边一支叫双曲线右支。
原因分析:在设计时忽视了学生在这里会出现问题。
再设计:演示完双曲线图形,板书“双曲线及其标准方程”后向学生强调以上内容。
2.双曲线定义讲解环节
不足之处:在探究常数的条件时,对于不满足条件的情况——常数等于0和常数等于两定点间距离,学生没有分析出这两种情况下的轨迹图形,最后由教师给出。
原因分析:图形问题,学生仅凭想象不容易找出答案。
再设计:本环节先让学生思考,若学生想象不出,借用几何画板演示常数趋于0和趋于两定点间距离时点的轨迹,帮助学生猜想点的轨迹并说明猜想理由。
3.标准方程探究环节
不足之处:在双曲线和椭圆的标准方程比较时没有强调在椭圆中,分式较大的分母为a2;而双曲线中,正号分式的分母是a2。
原因分析:在双曲线和椭圆的标准方程比较时,学生已经分析出分母为a2的式子始终是正的,于是便默认学生可以反推正号分式的分母即为a2,没有再强调。
再设计:在比较双曲线和椭圆的标准方程时强调椭圆中,分式较大的分母为a2;而双曲线中,正号分式的分母是a2。
4.练习检测环节
不足之处:对学生说出的c等于正负4为及时进行更正。
原因分析:紧张导致只集中注意力听了学生的解题思路,对细节问题没有听出。
再设计:对学生容易出现错误的地方要谨慎,及时发现错误更正。
本节课经历了多次试讲打磨,是我们全组老师智慧的凝结。本节的成品课比
第一次的雏形课进步很大,由此我深深的体会到了集体的力量之巨大,合作的成效之显著。希望以后有更多的集体合作的机会。
《双曲线及其标准方程》 2
解析几何是整个高中数学的重点,更是难点。如何有效的引导学生加深对这部分内容的理解是我思考的一个问题。讲过双曲线及其标准方程之后我进行了如下的反思。
首先是对教学过程的回顾,在导入新课时我对比着椭圆的第一定义展开了这节课的学习:
问题一:椭圆的第一定义是什么?
问题二:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?
由于前面的铺垫工作做得比较好,同学们积极讨论纷纷发表自己的见解,我一看预期目标实现就趁热打铁进入了下个阶段。
然后是进入新课:
问题三:类比椭圆定义和标准方程,你能得出双曲线的标准方程吗?
问题四:回忆椭圆标准方程的推导方法,你能推导双曲线标准方程吗?
本节课我主要是和椭圆进行类比教学,通过椭圆向双曲线过渡。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的问题。
我个人认为这节课的成功之处在于:
一、教学方法上:突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段;结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。
二、 学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器瓶”,课堂上为学生的主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的'主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
三、学生评价上:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,使得本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛活跃!从而进一步激发学生创造的潜能,提高他们的创新能力。
四、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,交流练习互穿插的活动课形式,学生始终处于问题探索研究状态之中,激情引趣。教师创设和谐、愉悦的环境及辅以适当的引导。促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题.进行主动探究学习,形成师生互动的教学氛围。
五、教学实效上:既让学生在基础上巩固、深化、应用双曲线的定义并掌握待定系数法求标准方程,又可加强对代数运算能力的培养,在此体验方程、化归、数形结合、分类整合等数学思想,为下一节《双曲线的几何性质》的学习即“由数到形”作了坚实铺垫和准备。
这节课的不足之处在于:
一、本节课的知识量比较大,而且是建立在双曲线定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于课前预习的工作不够落实,导致课堂上简单的复习效果不好,从而影响到学生在第二个过程的例题讲解中反映出的思维比较的缓慢及无法进行有效的思考的问题,因此在以后的教学中要加强对学生学习习惯的培养,特别是课前预习的好的学习习惯,加强对上节课程的复习。
二、从课堂的效果来看学生的运算能力还要提高,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。
以上就是我的 ,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。在教学中我还有很多不足,在以后的教学中要继续努力,不断总结经验教训,迈上新的台阶,为高中数学教育作出贡献。
《双曲线及其标准方程》 3
本节课我在45分钟内完成了规定的教学内容,较好地完成了教学任务,达到了预期的教学效果。上完这节课后我认真地进行了反思,具体内容如下:
一、教学过程回顾
1.导入新课:问题1:椭圆的第一定义是什么?
问题2:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?设计方法加以验证。
2.进入新课:问题3:类比椭圆定义和标准方程,你能得出双曲线的标准方程吗?
问题4:回忆椭圆标准方程的推导方法,你能推导双曲线标准方程吗?(本节课我主要是和椭圆进行类比教学,通过椭圆向双曲线过度)
二、成功之处:
1、教学方法上:"突出教学内容中主要的、本质的东西;将每堂课具体任务与整个教学任务合理地结合起来;选择最合理的教学方法和手段。"结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学这两种教学方法,体现了认知心理学的基本理论。
2.学习的主体上:课堂不再成为"一言堂",学生也不再是教师注入知识的"容器瓶",课堂上为学生的主动参与提供充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了"六让":凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
3、学生评价上:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做得精彩有创新,教师给予学生充分的鼓励,使得本节课学生在学习过程中兴趣浓厚,学得积极主动,课堂气氛活跃!从而进一步激发学生创造的潜能,提高他们的创新能力。
4、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,交流练习互穿插的活动课形式,学生始终处于问题探索研究状态之中,激情引趣。教师创设和谐、愉悦的环境及辅以适当的引导。促进学生说、想、做,注重"引、思、探、练"的结合,鼓励学生发现问题,大胆分析问题和解决问题.进行主动探究学习,形成师生互动的教学氛围。
5、教学实效上:不因为比赛,而搞花架子。既让学生在基础上巩固、深化、应用双曲线的定义并掌握待定系数法求标准方程,又可加强对代数运算能力的培养,在此体验方程、化归、数形结合、分类整合等数学思想,为下一节《双曲线的几何性质》的学习即"由数到形"作了坚实铺垫和准备。
三、不足之处:
1.本节课的知识量比较大,而且是建立在双曲线定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于课前预习的工作不够落实,导致课堂上简单的复习效果不好,从而影响到学生在第二个过程的例题讲解中反映出的思维比较的缓慢及无法进行有效的`思考的问题,因此在以后的较学中要加强对学生学习习惯的培养,特别是课前预习的好的学习习惯,加强对上节课程的复习。
2.从课堂的效果来看学生对运算的熟练还不够,他们总是担心会出问题,特别是解方程题缺乏化简的能力,教学上我的处理是在教学的过程中如果出现了这类问题,就具体跟学生讲解,然后让学生练习总结。今后还要加强对学生这方面能力的培养。
以上就是我的 ,在教学中还有很多不足,在以后的教学中要继续努力,不断总结经验教训,迈上新的台阶,为高中数学教育作出贡献。
《双曲线及其标准方程》 4
第一次授课是在高二五班,主要采用ppt讲解。ppt是我在备课的时候,从网上下载了一个公开课课件,我觉得挺好的,就稍微改了改,ppt讲的`很细,而我之前带过一届高二,就没仔细看,结果板书与ppt的结合不是很顺利,。另一方面,本节主要是得出双曲线的定义以及标准方程的推导,理论性比较强,基本上都是我在讲,说实话都讲的冒汗了,而学生全程在听,只在讲解例题的时候动了动笔,所以思维不是很集中。讲完以后,心情不好。
第二次上课是在高二六班,很不巧电脑坏了,没有办法用ppt,只能板书讲解,除了拉链的数学实验,其余都很顺畅,学生配合的也好,节省了很多时间,课后练习也处理完了。
所以,上完课后,我就在思考一个问题:上课到底要不要用ppt?思考的结果是我没有把握好力度。
第一次授课时,我将ppt当成了依赖,没有意识到其辅助作用。
第二次授课时,缺少了ppt,拉链数学实验没有展示出来,仅凭画图,学生想不明白。
而且有了椭圆和双曲线的学习基础,学生也掌握了基本研究流程,完全具备自学能力。所以,不需要教师全程讲授,可以制作导学案,让学生自主研究、小组讨论,教师加以补充即可。
【《双曲线及其标准方程》 】相关文章:
高三数学《双曲线及其标准方程》说课稿09-08
《抛物线及其标准方程》 04-26
《抛物线及其标准方程》物理 09-14
《圆的标准方程》 06-12
圆的标准方程 06-24
圆的标准方程 6篇03-05
《方程》 03-09
《方程》 01-23
《方程的意义》 03-22
《解方程》 03-13