首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >《分数乘法》

《分数乘法》

时间:2023-04-11 18:15:50 我要投稿

《分数乘法》

  作为一名到岗不久的老师,课堂教学是我们的任务之一,借助 我们可以快速提升自己的教学能力,那么应当如何写 呢?下面是小编收集整理的《分数乘法》 ,仅供参考,大家一起来看看吧。

《分数乘法》

《分数乘法》 1

  探究环节是本节课的重点,包括“理解分数乘整数的意义”和“归纳分数乘整数的计算法则”两部分,其中后者是重中之重。 “理解分数乘整数的意义”时,巧妙运用“认知迁移规律”,引导学生在比较中自主发现分数乘法和整数乘法的相通之处;“归纳计算法则”时,留给学生自主探索的空间,使学生充分经历“尝试解答——初步得出结论——验证结论——归纳法则”的过程,不仅提高了学生自主学习的意识,而且使学生掌握了学习的方法。

  总之,给学生发现的机会,他们能自己做的我们不告诉他们。如

  1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。

  2、他们能自己计算分数乘整数的式题。

  3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

  数学课中练习设计具有很强的策略性,好的练习可以使“不同的学生在练习中得到不同的`发展”。本节课的练习设计采用“题组”的形式,就是立足于尊重学生的差异,变“步伐一致”为“优者制胜”。计算速度快的同学可以有时间看书质疑,从而提高其发现问题、提出问题的能力。另外,在开放练习中,通过学生补充的条件和自编的应用题,可以把前后知识融会贯通,找到学习新知的生长点。

《分数乘法》 2

  一、让学生在探索的过程中理解。

  在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

  在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的`讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

  二、回顾学生所做作业,出现问题集中表现在以下几点;

  1、脱式计算(自觉运用简便运算)的题,有许多学生盲目运用运算定律进行简算。

  采取应对措施:注意让学生明白简算的目的,分数的简算,原则上与整数、小数简算相同,都是在不改变结果的前提下改变运算顺序,尽可能减少计算的繁琐性。但方法却不同,整数和小数往往是凑整十、整百的数,而分数则是为了好约分。

  2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,而忽略了单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲。

  三、采取应对措施:

  练习课中先复习求一个数的几分之几是多少的文字题,结合复习题让学生回忆一个数乘分数的意义,对分数的意义进一步加深。帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同,为学习相应的分数应用题打基础。

  复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。

  问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。

《分数乘法》 3

  本单元的教学,分数乘法解决问题是一个重点内容。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的'线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。

  此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。

  具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。

  在教学中,我强调以下几点:

  (1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

  (2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。

  (3)帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。

  对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

  教学中也显露出一些问题。主要存在于:

  1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

  2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

  3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。

《分数乘法》 4

  《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。

  在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:

  一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

  二、以1/5x1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。

  三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。

  通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的`几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

  数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

《分数乘法》 5

  《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,力戒传统教学中烦琐的分析和教条的死记,引导学生正确理解分数除法应用题的数量。我作了以下的一些教学尝试:

  一、从生活入手学数学。

  一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中努力体现“自主、合作、探究”的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的'能力,省去了许多烦琐的分析和讲解。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1 ”;“知1 求几用乘法,知几求1 用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。

  学生学的轻松,教师教的快乐。

《分数乘法》 6

  分数乘法教学是六年级下期的一个教学内容之一,其实整数乘法对于同学们来说,已经不是很陌生的问题了,所以,在传授分数乘法这一知识点时,让同学们做一做整数乘整数所表示的意义,然后。让同学们通过自习的方式对今天所学内容进行迁移。在交流时,我发现大部分学生基本上理解了分数乘法的意义及与整数乘法的异同。可是还是发现了一些问题:

  ⑴每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。

  ⑵分数乘法中:求一个数的几分之几是本册中的中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。

  ⑶在教学中要强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。

  针对以上失误,在今后教学中要补充的内容是:

  ⑴让学生用画图的方式强化理解一个分数的.几分之几用乘法计算。

  ⑵强化分率与数量的一一对应关系。

  ⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。

  ⑷利用分数化单位,如:2/5时=()分1/5吨=()千克

  分数的教学对于本册来说,既是一个重点,又是一个难点,要在实际的练习中加以理解和应用。

《分数乘法》 7

  分数乘法应用题大致可分为两部分:一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同;另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用,它是分数应用题中最基本的。不仅分数乘法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的'意义。教学本课后的感受是:

  1、开始结合复习题让学生回忆一个数乘分数的意义。对分数的意义进一步加深认识, 《《分数乘法应用题(一)》 》。

  2、复习求一个数的几分之几是多少的文字题,为学习相应的分数应用题做准备。

  3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的,为以后应用题教学做好铺垫。

  4、以后在教学前我还要深钻教材,把握好课本的度,向其他老师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。

  5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习

《分数乘法》 8

  这节课主要是让学生通过具体的情境初步理解“求一个数的几分之几可以用乘法计算”。在以前没学分数乘法的时候,我们是先求出1份的量,再乘法相应的份数解答求一个数的几分之几是多少的问题,今天的学习既是对分数乘整数意义的拓展,可以看作是一次方法上的优化和提升。从课堂反馈看刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是运用分数意义的认识去解决问题,但经过一系列的训练后大多数的学生列式已经很自然的把单位“1”的量与它的几分之几相乘。

  本课教学的导入部分,我选择了复习导入的方式,我把课后的“练一练”提前,改变题目要求,让学生运用分数的认知相关知识解决问题,学生非常熟练,在这个部分。我的教学意图非常明确:复习分数的相关知识、强化单位“1”。为解决例2问题、学习新的方法做好铺垫。

  在教学例2时,我首先带领学生理解题意,重点带领学生理解1/2、2/5的意义,从而确定单位“1”。在解决问题的环节,我首先出示问题(1)红花有多少朵?学生独立解决,学生根据以前所学知识,当然列式10÷2=5(朵)这时候我再揭示:像这样求10的1/2是多少还可以用乘法计算。这时出示:10×1/2让学生独立计算得到与第一种计算方法一样的'结果。然后,我引导学生进行比较这两个算式有什么联系?问题一提出来,学生的反应不是很强烈,很多学生不知道应该怎样去回答这个问题,这时,我就直接告诉了学生,实际上如果我将问题设计的更有坡度一些,能再等一等让学生多思考了一会儿,我想信学生一定会明白了原来两个算式都是求一个数的二分之一是多少。这样就很好的把旧的方法与新的方法进行很融洽的衔接。实现了方法上的跨越。

  基于问题(1)的教学,问题(2)抛出以后,我直接让学生独立完成,在学生汇报环节,果然与我预期的一样,学生列出了两种不同的算式10÷5×2、10×2/5。在这个部分的教学,我主要把教学重点放在两种计算方法的意义与联系上,我采取小组讨论的方法,让学生去分析这两种算法的本质联系。但在汇报环节,我有些操之过急,没有给学生更多表达的机会,自己就把答案分析给学生听了。

  在整个教学环节中,我一直加强的“单位1”概念的强化和训练,我始终抓住一句话,“是谁的几分之几?把谁看作单位1”,另外还教学生在条件中找单位“1”的一些方法,为后面的学生作一个铺垫。因为,本节课的所有习题都是用同一个数乘以几分之几,这样学生在列式时就会不考虑单位“1”而直接就用整数与分数相乘,加深学生对单位“1”的理解。这样就可以避免学生形成思维定势:因为学乘法而用乘法。

  巩固练习环节,我把“练一练”再次出示,不过这次改变题目要求:用乘法列式计算。让学生再次练习,使学生体会到今天所学方法的实际作用。巩固练习部分我还安排了练习拔的第6题:一瓶饮料一共900毫升,这道练习需要学生解决的问题一共有4道,其中问题(1)是3瓶饮料多少毫升?其它三道问题都是用不同的表达方式求900毫升的几分之几是多少。因此在共同解决四道问题以后,我让学生找出其中一道与其他几道表示意义不同的。并且分析原因,目地就是强化分数乘整数的不同意义。

  本次课的教学,有以下几个问题值得深思:

  一、备课设计时要多了解学生情况。由于刚接班不久,学生的基础、能力等方面的情况掌握不多,在教学时,不敢放手,导致学生的思维、表达缺乏深度。

  二、要在教会学生学习方法上多下功夫。本次课的教学在这方面进行了一些探索,但不够。今后要加强这一环节的引导。提高课堂教学的实效性。

《分数乘法》 9

  《分数乘法(二)》其实是进一步探索并理解分数乘整数的意义,并能正确计算,能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。根据第一课时学生作业反馈情况,我调整了教学模式,让学生先学后教,课堂上学生讨论明白了:谁是单位“1”,单位“1”已知的,用乘法计算(虽然这部分知识目前没有涉及),我认为适当渗透有利今后的教学。

  学生的理解也各有千秋,这体现了“不同的人学习不同的数学”,有的学生用分数加法来理解分数的意义以及计算方法;有的学生能够从整数和分子相乘,分母不变。

  从编者意图可以看出:用图形来理解分数乘整数的意义是重要的,于是在计算前充分感知涂图形的过程,为后面计算打下基础。有了几节课的铺垫,学生在计算过程中没多大的错误,说明了学生对算理的'理解比较清晰,很多学生对约分还是做得比较好。

  但在一位学生的作业中,清楚看到这个学生没有把约分后的分母做分母,依然是原来的分母做分母。经过辅导,学生明白了道理,同时反应课堂上还存在了优生抢了课堂的风头。

《分数乘法》 10

  分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:

  例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756

  (1)长江流域可供开发的矿产资源有多少种?

  (2)全国的矿产资源有多少种?

  其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。

  然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的'这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。

  首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。

  其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。

  最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。

  综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:

  例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?

  (2)果园里有60果李树,李树是桃树的,李树有多少棵?

  这样的设计我认为有这样几个好处:

  1、单位“1”不变,都是桃树。

  2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。

  通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗

《分数乘法》 11

  一、教材分析:

  六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。

  根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。

  学情分析:

  六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的.本质。

  二、单元目标解读

  根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:

  1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。

  2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

  3、会解答求一个数的几分之几是多少的实际问题。

  4、理解倒数的意义,掌握求倒数的方法。

  本单元的教学重点,难点是:

  1、掌握分数乘法的计算方法,会进行分数乘法的计算。

  2、会解答求一个数的同分之几是多少的实际问题。

  3、理解和掌握求倒数的方法。

  三、主题单元教学构想:

  (一)注意三个原则

  1、在已有知识的基础上,帮助学生自主构建新的知识。

  2、让学生在现实情景中学习计算。

  3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。

  (二)设计思路

  本单元教学内容计划用15课时。

  第一部分:分数乘法(7课时)

  1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。

  2、加强自主探索与合作交流。

  第二部分:解决问题(5课时)

  1、紧密联系分数乘法的意义,理解和掌握解决问题的思路与方法。

  2、借助线段图帮助学生理解数量关系。

  第三部分:倒数的认识(1课时)

  1、让学生充分观察讨论,找出算式的特点。

  2、特别理解"互为倒数"的含义

  第四部分:整理和复习(2课时)

  1、以知识整理措施形式回顾本单元的主要学习内容。

  2、安排练习。

  四、

  "分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:

  1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。

  2、在以后教学前我还要深钻教材,把握好课本的度。

  3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。

《分数乘法》 12

  这节课是上周上的,杂事纷扰,一直没有闲暇来好好写写当时教这节课的感受。

  这节课上下来,有两个重点需要把握,一个是理解分数乘分数的意义,这是解决分数乘分数所有的实际问题的前提,如果意义不理解,问题解决犹如空中楼阁。那教学的第一个板块就是意义的教学,上一节课我们已经知道分数乘整数的另外一个意义,即求一个数的几分之几的是多少,我从这个意义入手,延伸到一个分数的几分之几也是需要用分数乘法的。

  借助《庄子。天下》那句“一尺之锤,日取一半,万世不竭”入手,先回顾一个整数的几分之几用分数乘法,再引申到当一个分数的几分之几时同样也是可以用分数乘法的,在出示分数乘分数的时候,同时出示具体的木棒截取的过程,让孩子在具体实物中理解,其实其中一个分数表示一个具体的量,而另外一个分数就是一种分法(或是按照孩子们的想法叫做截法),或是有些孩子理解到分数乘分数其实是分了两次。在这个环节,孩子们需要重点理解意义,同时也初步感受到分数乘分数可以用分母乘分母,分子乘分子。

  那接下来的环节就直捣黄龙了,深入探索分数乘分数的方法,当然很多孩子已经知道方法就是分母乘分母,分子乘分子,但是不知道为什么那样,那下面的探索环节就是要弄清楚方法的原理。算理的理解还是需要借助直观模型,因为算理在学生头脑里是一个很抽象的东西。当然在探索之前,我们还是对意义进行了再次强调,还把两个乘数反一反,再说意义。紧接着出示书本例题,放手让孩子去画图,在一个长方形中涂出最后的结果。涂完之后,把不同的结果反馈到黑板上,孩子们分别说,说的.过程中我进行一些重点追问,这些追问无非就是在关注每一次分法。全部说完之后,再次沟通各种方式。开始提炼这些图形与算式之间的共同联系,这种联系就是在明晰算理的内在原理,孩子们归纳发现,原来在图形中,被分了2次之后,这个总份数其实就是分母乘分母(也就是最终结果的分母),比较难理解的是在图形中怎么体现分子乘分子,经过一番激辩,孩子们渐渐明白两次取出份数之积就是最终答案的分子,在图形中就是先取了几份,再在这几份中取出几份,也就是说是几份中的几份,那最红取出的总份数就是把两次取出份数乘起来就好了。

  最后强调先约分,而不是最终结果出来在约分,这样计算会更加简洁,不过从课后作业来看,如何约分还是需要细讲。

《分数乘法》 13

  《分数乘法》这一单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法。在教学如何引导学生理解分数乘法的意义和计算方法时,我进行了一些思考。

  一、利用学生已有的知识水平与生活经验,实现新知识的迁移。

  在教学分数和整数相乘时,根据学生的已有的知识基础,课前复习设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学1/5×3,首先要让学生明确,要求3个1/5相加的和,也就是求1/5+1/5+1/5是多少,并联系同分母分数加法的计算得出1+1+1/5,然后让学生分析分子部分3个1连加就是3×1,并算出结果,在此基础上,引导学生观察计算过程,特别是1/5×3与3×1/5之间的联系,从而理解为什么“用分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3/7×2,然后进行集体交流,理解分数与整数相乘的计算方法。

  二、在具体的情境中,引导学生理解分数乘法的意义。

  通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:教科书第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。

  三、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。

  小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。本册教材第22页第1题:一个图片占一张彩纸的`1/5,3个图片占这张彩纸的几分之几?教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。

  总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

  这是一节计算课,看似很简单。可是,从学生的作业反馈情况,并不理想。从学生第一次完成的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。所以我应出示对比练习,让学生体会在过程上约分的优越性与简便性。从而养成优化方法的习惯。

《分数乘法》 14

  例2的教学是重点帮助学生看出单位“1”的量,找到单位“1”,理解男运动员占九分之五的含义,那女运动员占几分之几?那单位“1”的几分之几是多少怎么做呢?对于这个例题学生都掌握的很好,也发现了这种题型的特点,单位“1”都是两个量组成的已知单位“1”的数量和其中一个量的.关系求另一个数量,这种题型的通用方法就是可以先求另一个量的关系,然后用求一个数的几分之几是多少用乘法来计算。通过课后的反馈学生都完成的不错。

  本节课主要内容是对例3的教学,让学生重点理解“今年的班级数比去年多六分之一”的含义,弄清楚把哪个量看做单位“1”去年班级数的六分之一是什么?去年的班级数乘六分之一是什么?有的学生对于这个确实不是很理解,这个例题是两个量之间的关系,其中一个量是单位“1”所以画线段图时要画两条。

  学生对于线段图的掌握还是可以的,如果没有线段图的时候可能就是出现理解的偏差,分析原因可能是在第二单元求一个数的几分之几是多少没有理解。所以课后我经常画线段图来帮助学生女理解,也教会学生用线段图帮助他们分析题中的数量关系。

《分数乘法》 15

  分数乘法应用题大致可分为两部分。一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同。另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学的就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的'基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后我的感受是:

  1、开始结合复习题让学生回忆一下一个数乘分数的意义。对分数的意义进一步加深。

  2、复习求一个数的几分之几是多少的文字题,这学习相应的分数应用题做准备。

  3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。

  4、在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。

  5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。

【《分数乘法》 】相关文章:

《分数乘法》 03-27

分数乘法 01-25

分数的乘法 05-25

分数乘法 07-11

《分数乘法(三)》 12-06

分数乘法一 11-30

分数乘法 精选15篇02-18

分数乘法 (精选15篇)02-20

《分数乘法》 15篇08-24

分数的乘法 15篇08-10

Baidu
map