《植树问题》 (通用15篇)
身为一名到岗不久的老师,我们要在课堂教学中快速成长,写 可以快速提升我们的教学能力,如何把 做到重点突出呢?以下是小编整理的《植树问题》 ,欢迎阅读与收藏。
《植树问题》 1
《植树问题》以前被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发此刻诸多课例中,存在着这样一个共同的特点:任课教师都个性重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种状况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在应对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
透过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的状况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并透过公式帮忙学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后透过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学资料的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们用心地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种状况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有必须的复杂性,对于刚接触植树问题的四年级学生来说,则更有必须的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,透过直观的观察初步感知三种状况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的状况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种状况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种状况,我们在列式计算棵数时,第一步都是先求什么,怎样求?透过学生的'小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,透过公式帮忙学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期盼日后调整改善。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,期望能透过自己一点一滴的积累和改善,提高自己的业务水平和调控、处理课堂生成的潜力,在不久的将来,能看到更棒的自己。
《植树问题》 2
《走,我们去植树》
《走,我们去植树》是一首现代诗歌。这首诗歌通过描写少先队员参加植树活动的场景,展现了植树造林给祖国大地带来的喜人变化和给人类带来的好处,让学生明白植树是为自己、为他人、为人类、为社会、为今天、为未来造福,我们应该具有这种意识。这种情理交融的诗歌,很容易感动四年级的学生,但感动归感动,让他们真的行动起来,那是难的,特别现在城市的小孩真的很难有这种体验,课上我根据这句“荒滩、沟渠、山坡、公路……”省略号省略了什么?这个问题孩子很容易答出来。但是当我再问:他们还去了哪些地方?这下难倒了孩子,孩子还真没有说出几个地方。当有同学犹犹豫豫说出小区时,其他孩子不同意了“小区没地方栽。”“有人管,不能随便种树。”“都放满了车。”……这真是不怪孩子,城市的植树往往是由专门的劳动者来做,不然到处停满了车,要不然就被一些人开采来种菜,孩子还真没有这种经历。为此我给孩子提出这样的要求,在小区里,(允许)种上一棵花(树太大了),实在不行,在学校的'花园里栽上一棵花。美化自己的生活环境,写出自己的感想。孩子结合诗歌,编写了《种花》,虽然不太押韵,但这是孩子的一个创造,时间久了,就会有着巨大的收获。
给孩子创造的机会,引导学生拥有这种创造。将来孩子才能给我们创造出一个崭新的未来。
《植树问题》 3
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容,它原先是奥数知识,是少部分学有余的孩子学习的。而新课程改革后,该内容被选入课本,每个孩子都要参与学习。这时,我们该怎样去组织课堂教学呢?
1、引导学生画图理解。
植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,一端栽一端不栽“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。等学生找到规律后再解决这类问题就简单多了。
2、创设情境,让数学走近生活。
“数学来源于生活,而又服务于生活。”在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。
3、加强训练。
数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理
4、这部分虽学得扎扎实实,但问题也存在着。
(1)针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的'问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
(2)把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
《植树问题》 4
《植树问题》是人教版四年级下册“数学广角”的内容,教材其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的《植树问题》选自人教版四年级下册《数学广角》这一单元的第一课时。教材共安排了三个例题,两端都种,两端都不种,封闭图形的植树问题。本节课我主要研究的是三种情况都种的植树问题。经过深思熟虑,我在课堂教学实施中着力想解决好以下问题:
如何让学生经历一个“将复杂问题转化为一个简单的问题来研究,再运用所发现的规律来解决复杂的问题”的过程?
在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中学生直接感知棵数与间隔数的关系,创设了问题情境使学生了解了间距在生活中的应用;在突破本课难点部分我通过一棵一棵的种树的课件演示使学生产生了对植树问题中这个比较复杂的问题是否有更好的解决问题的办法?“一棵一棵的种太麻烦了….”学生产生了这样的思想,确定了“转化的需要”,接下来,实施策略的产生与方法可行性验证;学生给出了例题不同的答案,此处留空白,让学生通过学具的摆、数、画等方法探究出棵数与间隔数之间存在:棵数=间隔数+1,反过来验证例题哪个答案是正确的,在这样的过程中,学生通过不断的观察、思考、操作完成了数学思想的建模。但在做题的过程中,学生还是知其然不知其所以然,“为什么植树问题屡教不会?”我进行以下反思:
首先,我只是在奥数课上系统讲解了植树问题,在我们的数学课本中没有作为一个知识点出现,只是出现在练习题目中,所以我们没有在课堂上拿出时间进行系统的讲解。
其次,无法将脑海中的数学模型与实际的.植树问题联系起来。虽然记住了“五根手指四个空”但是却无法与实际的安装路灯、插彩旗以及种树等问题联系起来。他们不知道手指的间隔与种树、安灯和插彩旗有什么关系。
再次,当我们在讲解植树问题的时候,我们往往是这样讲解的:“同学们,600米的小路,每隔5米一棵树,咱们现在求间隔?”学生很容易列式:600÷5.然后我们问这样结束了吗?学生说:“没有,还要加1”。只是在一问一答的模式中教学,从来没有让学生自己通过画一画的方式来种小树。如果在讲解的时候。结合手指,然后让学生结合实际来画一画,数一数到底间隔数和数学的棵树之间的关系,自己动手发现的规律远远比我们告诉的记得牢的多。
有了这次植树问题的教训,以后再遇到像“植树问题”这样的典型问题时,我一定会在建立模型的基础上然学生通过充分的动手体验去获得知识,这样远比老师告诉他的效果好!没有一堂课是完美的,我的这节课依然如此,但是我相信,只要不放弃努力,不放弃前进的脚步,我们会继续不断的探索下去。
《植树问题》 5
课前,我利用一根绳子按一定的间隔把小棒(当小树)捆在上面,结成一个封闭图形。课开始让学生观察封闭图形的植树问题,这时我不失时机的从一棵树那里剪开,这时学生露出了奇怪的眼神,同时我提出这属于线段上植树问题的哪一种情况,学生很快就喊出:一端种另一端不种:棵树=间隔数。课中利用形象的`课件出示了生活中各种各样封闭图形的植树问题,学生轻松的获取了新知。(课始我设计的目的加深学生理解封闭图形的植树问题)
课后,我给学生了一个问题:我班有55名学生,如果要站成一个最大的正方形方队,这个正方形方队最外层一共有几人?方队一共有几人?学生纷纷开始讨论,七嘴八舌找我讨论,我没有及时告知他们答案,而是让体育委员把学生带到操场上实际的站队,让他们自己找到了答案。
这个单元的学习达到了我预期的效果,虽然本单元教学有点难掌握,但只要教师注意激发学生的兴趣,就能突破难点。
《植树问题》 6
《植树问题》是北京市义务教育课程改革实验教材第八册第三单元实际问题中的资料。这一资料主要涉及到的知识点有:敞开状况下的两头植、两头都不植、封闭状况下的植树问题(一头植和一头不植)这三种状况。这些资料是奥数中出现的资料,对于四年级的学生来说理解起来有必须的困难,怎样才能让学生即能学会,还要学的简单呢,我反复研读教材,分析学生。《课标》中提出:“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“探求给定事物中隐含的规律或变化趋势。”“植树问题”通常是指沿着必须的路线,这条路线的总长度被树平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。
基于以上思考,我把目标制定为:知识与技能:利用线段图理解两段要植和两端不植两种状况下棵树、间隔数和总长之间的关系。过程与方法:1、透过合作探究、动手实践发现这两种状况植树问题的规律。2、让学生经历探索、猜测、试验、交流、归纳运用的过程获得解决问题的策略。情感态度价值观:让学生感受数学知识在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题;培养学生的应用意识和解决实际问题的潜力。
教后反思:
在本节课的教学中,我根据教学资料的特点和学生的实际状况,在探究两端都植的规律时安排了动手操作,想透过引导学生用心参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:出示一道开放性的题目:一条公路长()米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,从而探究出两端都要植时的间隔数和棵数之间的关系,要求是这样的:设计:全长()米,每隔5米,有()个间隔,种()棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案思考到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们就应是能够掌握的。但是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律”时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的用心性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有必须的问题,对于学生来说太抽象,太难了,自
己确定长度时,要思考到平均分还要分完,只给学生一条线段,他们不明白从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后透过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学资料的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。激发学生探究的欲望。设计的`例题是一个开放性的题目,带给给学生的是现实的,是有好处的,挑战性的。开放性的设计,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们用心地去探究,使学生完整的体验“植树”这一实践活动。让学生比较系统地建立植树问题的三种状况,即两端都植;两端都不植;封闭状况下的植树问题(一头植和一头不植)。
本节课的特点:
一、透过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。
本课设计正是从这的角度出发,设计了给学生这条路固定的总长是30米和树的模型让学生动手“植树”的环节,这样能够充分调动学生手、脑、口等多种感官参与到数学学习活动中来,更大程度地提高学生参与学习的效度。学生在分组合作模拟植树活动中寻找规律的时候表现的很简单。这样的活动方式,不仅仅是充分展示学生个性思维和了解学生原有生活经验的难得平台,而且学生在活动中建立了植树问题的模型,为学生在下面的学习做好直观的铺垫。
二、渗透“以小见大”的数学思想方法,培养学生数学思维潜力和解决问题的潜力。
“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导透过“以小见大”来找规律加以验证,让学生透过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生透过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生用心性。
三、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。
植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的好处,加强了模型应用功能的练习,
在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的状况呢?透过学生的举例,让他们进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识。
数形结合是数学解题中常用的思想方法,数形结合的思想能够使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;本着这个思想我在达成本课的教学目标之一:初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的潜力。在出示完例题后,安排了这样的一个实践活动:以小组为单位在一条线段让用小树的模型模拟植树,在增加学生学习兴趣的同时,由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。
本节课的不足:
但这节课也有我颇感不足的地方:
1、那就是我把学生估计过高,我以为只要学生弄懂了棵数和间隔数之间的关系之后,解决植树问题就就应没多大的问题了,但事实出乎我的预料,因为有一部分学生明白了全长和间距不会求间隔数,我以为这是学生早已经学过的而且经常用到的,所以没个性的复习,导致了基础较差的学生无法下手。
2、在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
3、在教学过程中,因担心上不完,当遇到学生“答非所问”的时候就表现的很急躁不能静下心来仔细地听完学生的发言;
教学是一门遗憾的艺术,虽然这节课给人留下了很多遗憾之处,但它毕竟是我自己的产物,是我对新的教法的一种大胆的尝试,而且在准备这节课的过程中,我学习了很多,也收获了很多。为了让每节课的遗憾能少一些,我会继续为之努力。但愿自己在这条路上能走的更远。
《植树问题》 7
一、遇到的问题:
《植树问题》是三年级第一学期教材数学广场中的教学内容,也是二期课改中数学拓展性的知识。是曾经无数次被搬上?舞台?演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点: 任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种” 。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。 但是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
二、第一次试教分析:
我根据教学内容的特点和学生的实际情况,在探究两端都植的规律时安排了动手操作,想通过引导学生积极参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:
出示一道开放性的题目:一条公路长( )米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,
从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长( )米,每隔5米,有( )个间隔,种( )棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。
三、第二次试教分析:
我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。
为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。
但是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自己发现的规律,解决插彩旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?
四、第三次试教分析:
首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的`水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。
其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行独立的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎么种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透
五、反思:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学好
数学的信心。
结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。
2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。
3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。
《植树问题》 8
20xx年4月15日,我参加了丰都县三坝乡录像课决赛课活动。我参赛的内容是《植树问题》。《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。从教学目标的设定,教学设计和知识结构分析来看,通过实践,基本上我感觉还算是比较成功的一堂课,有很多收获,感悟如下:
这个知识点的原型是一条直线路上用不同的间隔来栽树,得到不同的棵树,通过数字间的归纳,得出规律性结论并应用。教材将植树问题分为几个层次:两端都种,两端不种,只种一端。在教学中,侧重于向学生渗透化归的数学思想。在我看来,我们不仅仅是让学生会熟练地解决与植树问题相关的实际问题,而应该是将此类题作为渗透学生化归思想和原型提炼方法、甚至是培养学生双向可逆思维的一个学习支点,我要做的就是借助内容的教学发展学生的思维并提升思维的能力,通过课堂结果来看,还是取得了一定成效。
一、教学设计有深度、有厚度
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题---猜想验证---建立模型”不断数学化的过程,较好的实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归生活,也让学生再一次体验数学与生活的紧密联系。另一条线以渗透数学思想方法为线索。对于植树问题的探究,不仅让学生通过画线段图的方式,自主探究、小组合作、寻找、掌握等模式,而且结合线段图让学生理解了为什么两端都要种时,棵树要比段数多1,多的1指的是哪棵树。让学生不仅要知其然,还要知其所以然。
二、敢于放手让学生去探究,体现学生的主体地位
整堂课,我都是让学生通过自主探究,小组合作,汇报交流而得出结论。是他们自己总结出来的规律,而不是老师给他们灌的。因为我知道学生才是学习的主体,学习的主人。在这里为了便于研究,我把例题稍作了改动,原来是20米,每隔5米植一棵,我改为12米,每隔3米植一棵。(因为上这节课之前我试上过几次,学生画20米就画的20厘米,本子不够长。所以我就作了调整。)我把这一个单元的内容拿到这一节课来教学(三种植法),让他们小组讨论帮组设计植树方案。这个时候在组内就产生了争议,我不怕他们争论。有的事情就是要越辩才越明。我觉得学生在争论是好事。还有教师点拨时指出了段数就是间隔数(因为在试上时我说间隔数有部分学生不理解,我说段数学生都知道,所以这次教学时我把间隔数改成了段数)。
三、关注拓展和应用
植树问题在现实中的应用有很多,我们不但要讲清楚,辨析出由于路线不同,植树要求不同,路线被分成的段数和植树棵数之间的'关系就不同,比如安装路灯,比如切割,比如上楼梯,比如敲钟,比如锯木头等等,掌握了以后都可以用植树问题的模型来解决它,所以在教学设计的时候,充分考虑不同的题目,并不断提出变式的要求。
四、教学中,我认为以下几点要改进:
1、由于这节课充分展示多媒体对教学的辅助作用,所以容量比较大,有个别学生吃不透,对教材的梳理上还要学会取舍,照顾好中差生。
2、除非题目中出现很明显的两端都种,否则学生不大会主动判断属于哪一类植树问题。
3、解决问题时,审题不够谨慎,容易忽略两边或者两端这样的词语。
4、教师对课堂的生成问题处理还不够灵活。
5、对学生的评价这块还显得能力不足。
6、普通话也有待提高。
总之,一节课下来,发现自己真的还有那么多的不足之处,而且这些不足还不是一时半会能解决的。反思自己,今后还应加强学习,学习理论知识,学习优秀课例,特别是应针对自己的不足之处,运用与实际教学中。希望能通过自己的一点一滴积累和改进,提高自己的业务水平和调控、处理课堂生成的能力。希望不久的将来,能看到令自己满意的自己。
《植树问题》 9
本节课研究的只是两端都栽的植树问题。主要目标是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。这种思想的渗透能很好地帮助学生理解寻求解决复杂问题的一般方法,那就是从简单问题、简单事例入手,寻求规律,通过规律的得出,最终解决问题。
教学上我采用“自主——互助”的策略,力求让学生依据自学提纲及要求,通过独立思考,把不明白的问题与他人交流合作,使学生在不断地操作和交流中,经历发现和感受的植树问题的过程。环节如下:
一、通过课前活动,以大家都熟悉的上操站队为素材,让学生初步认识间隔,感知间隔数。
二、以自研题为载体,实现全课教学重点及难点的突破。
为此我设计分别在15米、20米、25米、30米的公路一边植树的问题,先让学生明确自学要求,然后根据要求独立研究与自己编号对应的.一题,重点让学生通过画图栽栽看,发现一棵一棵种树关键是要找准间隔数,在经历了从简单事例入手之后,各部分名称的实际意义已经得到了强化。
与此同时,植树问题的一般解法也已经得到了归纳。然后用找到的规律去解例1中的在100米绿化带上植树的问题,使学生获得真实的学习体验的同时,也培养学生学习数学的兴趣。在这几个过程中,学生学到了解决问题的方法,同时也获得了更深层次的情感体验。
三、多角度的应用练习,巩固学生对植树问题的理解,突出教学重点。
四、通过达标检测活动,了解学生学习情况,为改进自己的教学和跟踪辅导提供有利的保障。
五、评价总结,拓展延伸。
通过出示不同类型的植树问题,让学生近一步体会数学源于生活,数学就在我们身边,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣,也为下一节数学课做好铺垫。
《植树问题》 10
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的`方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
《植树问题》 11
“植树问题”教材将植树问题分为几个层次:两端都种、两端不种、只种一端及封闭图形。
我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的`。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系。当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
《植树问题》 12
“数学广角”单元,主要是要向学生渗透一些重要的数学思想方法,本册主要是渗透有关植树的问题的一些数学思想方法。通过现实生活中一些常见的实际问题,让学生发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的实际问题。 解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题的关键是找出隐藏的总数和间隔数之间的关系问题。
一、从基本题型入手,适当变式。
虽说数学广角这一单元主要通过简单的事例渗透一些重要的数学思想方法,或者介绍一些比较著名的数学问题,让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力。最重要的目的是让学生通过接触这些重要的的数学思想和方法,经历猜想、实验、推理等数学探索的`过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。但这部分知识对于基础教差的孩子来说,还是一个难点。这部份孩子很难从基础的题型中提炼出数学模型。根据这部分孩子的认知程度,他们能理解基本题型就已经是很不错了。题型一经变式,就没办法理解了。
这单元的知识,要因材施教,设置多个教学阶梯,做到让差生吃饱,让优生吃好。从简单的生活事例入手,让所有学生初步体会解决植树问题的思想方法和它解决实际问题的应用。这是最基本的教学目标,教学时要让每个孩子不管通过什么方法,都必须弄懂的基础。最后才对一些题型进行变式,但变式的题型不要求所有孩子都能明白。
《植树问题》 13
通过老师带领同学们去植树这一情境,接着出示ppt课件,让学生补充数学信息。让学生初步认识间隔,感知间隔数与棵数的关系。整节课以一道植树问题为载体,放手让学生自主学习,以三种不同的植树方案引导学生合作探究植树问题。
在教学中,让学生通过画图来解决,在画图过程中学生就会发现间隔数与棵数的关系。让学生在整理列表中学生们发现规律,验证规律、运用规律等活动,让学生经历数学模型的'科学探究过程。在这节课中,然学生以画图为主线,以“数形结合、一一对应”的数学思想方法为暗线,让所有学生参与为载体,展开学习,实现“数学模型的多维构建。
整节课上的有些前松后紧的感觉。以至于在解决问题中还有几道没有解决完。如果在探究三种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
《植树问题》 14
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的.实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的方法
3)学生汇报
4)引导总结:
两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
《植树问题》 15
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的.方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。
【《植树问题》 】相关文章:
植树问题 05-10
《植树问题》 03-10
数学植树问题 08-25
植树问题 15篇11-18
《植树问题》 15篇04-20
《植树问题》 (15篇)04-06
植树问题 12篇03-11
《植树问题》 (通用23篇)09-20
《植树问题》 合集15篇04-06