首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >《真分数和假分数》

《真分数和假分数》

时间:2022-04-13 09:55:45 我要投稿

《真分数和假分数》

  作为一名人民老师,我们要有很强的课堂教学能力,通过 可以很好地改正讲课缺点,那么你有了解过 吗?下面是小编精心整理的《真分数和假分数》 ,欢迎阅读,希望大家能够喜欢。

《真分数和假分数》

《真分数和假分数》 1

  真分数和假分数是在学生已经学过分数的意义和分数与除法的关系的基础上进行教学的,课上充分发挥学生的主体作用,让学生在课前预习的基础上合作探究,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念,自己得出判断和结论。

  既然真分数和假分数是以分数意义为基础进行教学的,那么这堂课离不开分数的意义,而五(下)的分数意义是用单位“1”来说明的,因此,我认为该内容的教学和分数的意义有着密切的关系。教材安排的例题也是利用学生对分数意义和分数单位的已有认识,通过在图形里涂色,引出对3/4、5/4的认识。再利用对假分数的初步认识,通过在图形里涂色表示6/4、7/4和8/4,9/4进一步丰富对假分数的认识。最后在此基础上,引导学生对比较上面例题中每个分数分子和分母的大小进行分类,形成并明确真分数和假分数的`含义。

  涂色是认识真分数假分数重要直观手段。小学生的认知往往建立在直观之上的,涂色学生的操作活动,操作的过程就是直观感知的过程。在涂3/4的过程中体会到:把一个圆看做单位“1”,平均分成4分,涂这样的3份是3/4。同样,涂4/4和5/4也是如此。

  分数单位是认识真分数假分数的重要点。教材要求学生先在下面的图形中涂色表示5个1/4,然后要求学生用分数表示几分之几。对假分数的初步认识的锲子就是分数单位,1/4有1个1/4,3/4中有3个1/4,3个1/4就是3/4;4/4中有4个1/4,4个1/4就是4/4。照此推想5个1/4当然是5/4,5/4有5个1/4。

  分类是形成真分数假分数的重要环节。在学生初步认识真分数假分数的基础上,引导学生对比较上面的每个分数分子和分母的大小进行分类,从而形成真分数和假分数的含义。

  课后反思自己的课堂依然存在很多的不足:

  1.教学能力还需提高

  虽然我能及时给学生纠正错误,但还是显得有些急躁,没有让学生准确用数学语言表达,忽略了学生表达能力的培养。

  2.自学指导争取做到精、简、细

  本节课的自学指导虽然体现了自学方法、自学时间、自学内容,但感觉容量太大,问题过多,设计不够精细,学生在自学中容易忽略个别问题,而书中小精灵提的问题没有在指导中体现出来,造成学生对真分数和假分数的特征没有真正理解,只能照着书回答。

  3.应变能力和调控能力还需提高

《真分数和假分数》 2

  真分数和假分数是在学生已经学过分数的意义和分数与除法的关系的基础上进行教学的。只有学习了真分数和假分数,学生才能比较全面的理解分数的概念。

  本课我主要采用自主探究、合作交流的教学方法,在教学中为学生提供充分的探索与交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己概括出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程。在教学真分数和假分数时,我先让学生通过观察图形的涂色部分,以及学生根据分数的意义理解假分数与真分数的内在联系,体会用假分数表示数量以及数量之间关系的合理性、科学性。然后让学生从观察大量的分数出发,自主探究,以自己的'感性经验为基础,对这些分数进行分类、比较,并在小组中交流自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,从而获得了初级概念,然后教师在引导学生,把这一概念的本质属性推广到同一类事物之中,通过这样的教学方法就是学生准确地理解概念,牢固地掌握概念,正确地运用概念。同时学生通过自主探索与合作交流,提升了思维水平,提高抽象、概括等能力,而在整个教学过程中教师只是一个学习的组织者、引导者与合作者。从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。

  当然教学中也有不足,例如,在练习题“练一练”第1题,用分数涂色部分。其中有两个图学生做错了,有一个图是7/4学生写成了7/8;另一个图应该是6/3学生写成6/6。通过反思,学生会出现这样的错误,是因为学生没有真正理解什么是单位“1”。还有出示数轴,让学生把真分数和假分数标在数轴上。由于学生对数轴的认识不是很清晰,把数轴跟线段混淆了,因此在独立完成此题时有一定难度。有学生只是象在线段上标分数一样,找到一个点就标上了,而没有考虑数轴上的数字是逐渐增大的,比如,1/3应该标在1/6后面,可有些学生在0-1之间分的6份中,把1/3标在了1/6的前面。如果在此题的处理上,先让学生弄清楚数轴和线段的区别,并且教师讲解其中两个分数如何在数轴上找点,这样,学生就会少走弯路,而且对数轴也会有一个充分的认识。

  一节课下来,通过自己的反思,给今后的教学积累下宝贵的经验,取长补短。

《真分数和假分数》 3

  “分数的意义”是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上的一次飞跃。

  在教学过程中,让学生在动手操作中,进一步体会分数意义中“平均分”、“分几份”、“取几份”的含义,这比枯燥的死记硬背条文要有趣的多,印象也深刻的多。同样,在分与折中,学生初步感知了分数意义在解决有关实际问题的(转载于:真分数和假分数 应用价值,这对学生的后续学习具有重要意义。

  1.在练习上淡化语言描述,强调概念本质。在练习中没有反复的描述,但学生在折一折、分一分、说一说等数学活动中,已经深刻的领会到了分数的本质意义,并且掌握的更加灵活。

  2.由单一为丰富,变枯燥为形象。通过分数与图形的结合、分数与整数的对应、分数在实际中的应用,形成了分数的意义表象,沟通了概念之间的联系,强化了实际应用在数学概念学习中的作用。练习也变得富有吸引力了。

  3.练习突出学生的创造性。以往的练习设计,问题封闭、答案唯一、缺乏灵活性。在这里注意到了问题的开放性、挑战性,最后一道题目,需要学生思维的参与,每一道题目,不同的人可以有不同的解答,让学生充分体验思维的.力量,享受创造的快乐!教学中,学生不时有精彩呈现。

  数学练习在数学教学中有着重要的作用。我在“分数的意义”这一课中设计的联系生活练习,能有效的解决了学生对分数意义的掌握过于抽象、枯燥、难懂的困难,使学生在有趣、富有思考性的练习中,从更高层面上来认识和理解分数。

《真分数和假分数》 4

  今天上完了《真分数和假分数》一课,我和学生们都非常有成就感,学生的问题意识和探究能力着实让我开心和兴奋,学生们也为自已精彩的表现给予了很高的评价。

  一开始,我为大家创设了猪八戒化缘得到了3张饼,可如何把它平均分给师徒4人的情境。因为是学生熟悉又喜欢的西游记的人物,一下子激起了学生探索知识的欲望,又调动了他们解决问题的积极性,因此每个学生都积极投入到探究过程中。当学生通过剪、画、拼等方法得到每人分得3个1/4,也就是3/4张饼后,我调整了情境,第二天猪八戒又化到了9张饼,他借助我们刚才发现的方法把饼平均分给了师徒四人,你知道他是怎么分的吗?此时学生又积极地投入到探究当中去,有的发现能分到9/4个饼,有的说能分到2个整个的`,还有1/4个。这时就有同学补充说是二又四分之一。

  于是我直接告诉学生像1/4、1/2之类的分数叫做真分数,像9/4、5/5、5/3等的分数叫假分数,分数可以分为真分数和假分数两类。这时眼尖的同学马上发问:那么二又四分之一又是什么数?我解释道:它叫带分数。这时马上有同学有疑问了:老师,带分数不也是分数吗?怎么不是分为三类?看!同学的质疑意识有多强烈。我提示道:你看一下,假分数与带分数有什么关系吗?我指着刚才得到的9/4与二又四分之一让同学比较。这时有同学恍然大悟:哦,我知道了,带分数可以化为假分数,所以分数只分为真分数和假分数两类。在我充分肯定同学的发现后,又有同学举手了:老师,我知道带分数是怎么化成假分数的?因为一个饼可以分为4个四分之一,2是两个饼可以分成8个四分之一,再加上一个四分之一就是9个四分之一了也就是9/4。其他同学听了有的表示肯定,有的还一脸茫然,正当我跟同学说这是我们下一节课会学习的内容,如果不懂把带分数转化为假分数没关系,下一节课会继续学习时,又有一同学举手补充到:老师,我发现有一个很简单的方法,只要把那个整数与分母相乘再加分子就可以了,分母不变。因为同学已自主发现了带分数转为假分数的规律,我也不想放过这么好的机会,因此顺势出了几个带分数让学生化为假分数,没想到同学居然都做对了。这时又有一个同学说,老师我发现要把假分数化为带分数,只要把分子除以分母就可以了。“是吗?”我非常欣喜的问道:“为什么只要把分子除以分母了?”“因为比如9/4,9含有2个4就是两张完整的饼,还剩1/4个,也就是9÷4=2……1因此就是二又四分之一。”

  看到学生有如此强的探究能力,我真的非常兴奋,也有意激起学生的挑战热情,说道:既然这样,我们来几个假分数大家用刚才发现的方法来试试看,验证一下猜想是否正确,学生就跃跃欲试了。当学生完成后,验证了自己的猜想是正确了以后,一个同学脱口而出:我们班的同学太棒了,连下节课的知识都解决了。我马上接口道:是啊,你们真太厉害了,让老师非常欣赏和佩服!全班同学都笑了,笑得那么开心,笑容是那么的灿烂……开心之后,我们又继续回到本课教学当中去,让学生去发现真分数和假分数的特征。

  上完了这节课,我心情非常愉悦,为学生的质疑意识和能力而高兴,为学生的探究意识和能力而自豪。同时也对本节课进行了反思:为什么能取得成功?我想可能有这几方面的原因:1、注重创设学生喜闻乐见的情境,让学生在疑惑中探究,在探究中思考,在思考中发现。2、重视学生的经验和体验,不是把知识简单的传授给学生而是让学生自主地建构知识。3、创设宽松的学习氛围,让学生敢说敢问。4、关注学生的思维,给学生较大的学习空间。5、关注学生的情感体验,注意运用赏识和鼓励。在今后的教学中,我还将继续探索能与学生愉悦度过四十分钟的教学模式,充分发挥学生的主体性和积极性、创造性,使学生能真正成为发现者、研究者和探索者。

《真分数和假分数》 5

  xx省xx市实验小学的xx老师执教一课,朱老师提出要“帮助学生理解真分数和假分数的意义,准确把握真分数和假分数的本质特征”。课前朱老师做出这样的思考:“学生怎样才算真正理解了真分数和假分数的意义?首先要结合具体的情境,让学生经历假分数的形成过程,感受并认同假分数产生和存在的合理性。其次,从学习基础分析,当学生面对一个真分数时,已经能从多个不同的角度去理解,并用自己的方式作出解释。比如,可以从部分与整体(一个物体或一个群体)的层面进行解读,也可以理解为两个量之间的一种关系,即一个量相当于另一个量的'几分之几。我认为,只有当学生看到一个假分数时,能利用已有的经验从不同的维度去解读它,对它的理解程度能与真分数等同了,才算真正实现了假分数意义的构建。”

  笔者在课前调查中发现, 学生们对于分数的认识大致如此:讲一个整体平均分成几份,这样的一份或者几份可以用用分数表示。比如一个月饼平均分成4份,有这样子的2份可以用分数四分之二来表示。但是,学生的认知中还是趋向于认同分子小于分母的情形。这就是学生实际和教学内容之间现实的而又不可回避的矛盾。那怎样解决矛盾?

  教学片断:

  师:你能用自己喜欢的方式表示出四分之一吗?

  学生个性化画图。

  教师和学生从四分之一开始,每一次增加一个分数单位,学生很自然也很顺利地完成。

  师:看着这5个分数,你有觉得谁最特殊呢?

  生:四分之五。因为分子比分母还要大。

  师:还有谁比较特殊呢?

  生:四分之四。分子和分母一样大。

  师:像这样子分子大于分母或者分子等于分母的分数,叫做假分数。

  师:前两天的学习我们对分数已经有了新的认识。你能在括号内填上自己喜欢的数,并画图表示这个分数吗?

  笔者在课堂巡视时看到了大多数的学生都会选择比4小或者等于4的数,并能正确画图表示.

  可以看出,学生对于分数的认识有了质的飞跃,即“学生认识到假分数在形式上与真分数是不一样的,但其实质都是分数单位累加的结果。”

《真分数和假分数》 6

  “真分数和假分数”这节课是在学习了分数的意义后学习的内容,这节课看似没有太多的内容,但是如果认真深挖教材,要讲的东西却很多。本节课教学时,我借鉴了教研室的数学专家张红娜老师的教学方法,借助学生的知识基础和学生的动手操作,辨析概念,掌握概念。

  强调数形结合,帮助学生建构概念,这是本节课的主要特点。我很清楚的记得张老师是先让学生用圆片来表示不同的分数,这样做我认为既可以联系旧知,又可以让学生在用圆片表示分数的过程中充分感知分数的大小。先让学生用一张圆片分别表示出它的四分之一、四分之二、四分之三,四分之四,这几个分数学生都能在一张圆片纸上轻松表示出来。然后提出新的问题,如果要表示出四分之五,应该怎样表示?在前边表示分数的基础上,学生通过讨论发现了两种方法:即用四分之四加上四分之一的.两个圆片就是四分之五,也可以用四分之三的加上四分之二的两张圆片也可以表示出四分之五。接着又让学生分别表示出四分之七,四分之九等分数。在学生通过动手感知分数后,让学生对这些分数进行分类,因为在做分数的时候学生已经有了基础,所以学生很容易就说出了分数可以根据比1大或者是比1小进行分类,到这时就水到渠成了,再做以总结,就顺理成章的引出了真分数和假分数。

  还清楚的记得张老师在讲完这节课后说过这样一句话:学数学就是为了用数学,我从听这节课,又按照这个思路和方法上课后,我感觉到数学确实是这样的。同时我也感觉到,任何一节课,我们只要结合学生已有的知识基础,结合学生的认知特点,站在学生立场上认真钻研教材,教学效果就会更好。教学真的需要我们用心去钻研,去思考。

《真分数和假分数》 7

  一、闪光点:

  在集体教研的时候,我发现《做一做》第2题是一个难点。怎样指导孩子在数轴上标点?张校长提出了一个很好的妙点子:

  先找分数单位1/3和1/6,之后找有几个这样的分数单位,写出分数。

  在课堂上,我这样展开我的学的过程:先让孩子读一读这些分数,然后认真观察,这些分数有什么规律?当孩子们发现分数单位相同后,我继而启发他们,我们能不能利用分数单位快速找点呢?

  现在,我已经比过去成熟多了。搁在过去的我,我会心急于揭示答案。现在我明白了,答案并不重要,即便孩子的答案是错误的,要他们学会思考,学会学习,这才是数学课的目的。知识目标只是实现能力目标的一个载体而已。学这个,学那个,对于孩子来说,那个没有什么分别,关键在于,在一节一节的数学课上,孩子们的思维水平获得了提升,学会思考,学会学习。因此,我不再急于直奔答案而去,而是细致地展开学的过程。感觉上,就好像一个魔术师,刷一抖,学习过程便展开了。真帅啊!我越来越能找到教师和学生之间力量的平衡点了。

  像这样,通过观察找到规律,学童的困难便迎刃而解。“观察思考,寻找规律,归纳概括规律,运用规律”,这四部曲已经成为我进行数学教学的一个圆环啦。就像元素周期表梦中的那个圆环一样。

  我总在想:如果我的课堂,就是教会学童几个概念,就是教会学童做几道题,就是教会学童背几个公式,那就太肤浅了。我的目标是教会学童学会思考,学会学习。让孩子自主学习,相较于我站在讲台前面,妙语如珠,喷珠溅玉,不知要费多少力,比我自己讲要来得辛苦。

  但是,看一下日历吧,现在是公元20xx年,我不能再把持着课堂,我必须从我的神坛上走下来,把这个神坛让给我的学生,同时也让出了我的精彩。我在心里默想:当孩子蹒跚学步的时候,走得不好,我们也莫可取代;当孩子学会咀嚼嚼不烂的时候,我们也概莫能助。歌中唱到:小呀么小儿郎啊,背着书包上学堂。别忘了,这里叫学堂,是学习的地方,是学生的天堂。我们的祖先莫非早就了解了教育的真谛?否则,他们为什么不管这里叫“教堂” ?一个词便已经把师生关系的楚河汉界划分出来了。因此,我在每一节课上都致力于教会孩子思考,致力于提升他们数学思考的水平,致力于训练他们观察和思考,致力于引导他们发现规律、总结概括、归纳规律。我觉得,这才是数学课的真谛。而例题也罢,练习也好,都是实现这些的载体。过去,常听人说,跳出教材教。我反应比较慢,经过这么多年的教学实践,我才悟到这句话的含义。怀揣着这样的教育理想,每一天迎着朝阳走进我的数学课堂,向着我的`目标迈进。从语文老师的角度教数学,我觉得教语文和教数学可以相长。教数学的语文老师我,越来越聪明啦!

  二、遗憾点:

  今天的课堂,“话筒”仍然在孩子们手里。根据预习,我们共同制定了本节课的学习目标,小组交流完毕后,陈业辉的小组是第一个到讲台上发言的。他绕开了主题图,直接介绍了假分数和真分数的意义。他还出了一道题:真分数()假分数。让小朋友们在括号里面填>、<、=。课堂上的意见立刻分成了两派。魏天宇说,不一定真分数比假分数小。如果是13/7,那…….他还没有说完,孩子们立刻喊起来:13/7是假分数。平时,孩子们善于使用小数据举例法来判断一道选择或者判断题的真假,而这个命题,孩子们不能确定世界上所有的假分数都比真分数大。毕竟,他们并不了解不完全归纳法。这时,刘华清说,所有的真分数都小于假分数。请大家看书—于是,她把真分数和假分数的概念读了一遍,孩子们这才恍然大悟。最有意思的陈业辉的小组,他们嘴里喃喃着:呀,咱们做错了!一边“仓皇” 逃下讲台。看来,他们组原来的预设答案是—无法判断啊!

  课堂上的一场思辨终于宣告结束了。但是却把---“真分数小于假分数”这个命题怎样带领学童开展学习------这个思考留在了课堂之外。

  三、改讲点:

  方法一:把真分数和假分数的特点清晰地呈现于黑板上,便于孩子们从概念出发比较;方法二:画出数轴,标出假分数和真分数,直观地观察;方法三:举例子;方法四:结合做一做的第2题,强化概念的理解。

《真分数和假分数》 8

  本节课要通过真分数,假分数的认识,使学生能全面理解分数的概念。所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的概念和特征即为水到渠成。在学生掌握了真分数、假分数概念后,再通过设问,让学生讨论出假分数化整数的方法及算理。

  新课教学分两部分。

  第一部分学习真分数,假分数概念。分三层。让学生通过观察、比较、讨论、认识分子和分母大小关系的三种情况,了解真分数,假分数概念;引导学生比较分数值与1的大小关系,认识真分数和假分数的特征;利用数轴进一步让学生认识真分数、假分数与1的关系,掌握它们的分界点是1。

  第二部分学习把假分数化成整数的方法。分为两层。让学生通过观察认识到这些假分数的分子都是分母的倍数;理解和掌握假分数化整数的方法。

  本节课中,真分数与假分数的概念犹为重要,概念教学切忌死记硬背、生搬硬套,我创设这样一种动手操作的情境,把分数意义、分数单位、分数的.组成这些知识综合蕴含其中,同时也为真假分数的概念埋下伏笔,将十分有利于学生的自主学习。自主探究学习源于学生的需要。学生心中装满问题,他们急于想知道为什么,建立在学生具有内在学习动机基础上的“想学”。我在教的过程中,注意培养学生“想学”这种意识,创设了问题情境,使学生处在想知而又不知的这种矛盾心理中,正所谓“不愤不发,不启不悱”、“思源于疑”。

  小组合作学习的一个功效就是能弥补教师难以面向有差异众多学生教学的不足,通过学生与学生的相互交流、相互帮助,真正实现每一个学生都得到发展的目标。所以在小组合作前,每个学生的独立思考相当重要,给予一定的时间进行充分的思考,然后在组内交流,这样才能保证合作的实效性。

《真分数和假分数》 9

  课前预习,所有学生都能根据真、假分数的概念及其特点对分数正确进行分类。但请学生用假分数表示图中的涂色部分或在数据上表示带分数则比较困难。

  针对这一现状,我对例2的教案进行了改动。在教具方面,原先准备用挂图教学,但考虑到挂图一次性呈现所有图案,不便于学生感受到一个圆是单位“1”,最后改为用自制圆片作教具逐一展示。在教学设计方面,原先准备一开始就完全放手,让学生独立尝试用分数表示图中的涂色部分。现在,学生是在我的引导下,逐步完成三个假分数的学习。特别是第二幅图,针对学生的困惑“为什么这幅图不能用7/8来表示”质疑,使其明确单位“1”,并且掌握假分数7/4的含义。从第三幅图学生独立完成情况来看,这样的改动是成功的。

  做一做第2题也是练习中的难点,需要老师辅导学生完成。在这里,我是这样指导的':我们把从0到1的线段长度看作单位“1”,请大家仔细观察把单位“1”平均分成了几份?

  请大家把1/6、6/6、7/6、13/6在直线上表示出来。

  指名板书,集体订正时问“为什么13/6在直线的这个点?”1/3表示什么意思?如果把单位“1”平均分成3份,1份是多长呢?你是怎样知道的?

  请同学们将1/3、3/3、5/3在直线上表示出来。

  为什么3/3和6/6在同一个点上?

  问:请大家观察表示真分数的点和表示假分数的点分别在直线的哪一段上?

  师:我们将分数与1进行比较共分为两类。一类是真分数,真分数都小于1。另一类是假分数,假分数等于1或者大于1。

  这样分层练习,由易(分母是6的分数)到难(分母是3的分数),最后通过观察对比,对分数进行分类,形成正确的认知编码。

  学生质疑:最小的真分数为什么是1/N,而不是0/N?

  整数可以看成是特殊的分数,分母是1的分数和分子是0分数,是一种特殊的分数,它与我们课本上所定义的分数(把单位“1”平均分成若干份,表示这样的一份或者几份的数)是不一样的。这两类特殊的分数是不能用课本上所说的分数的意义去解释的,它是靠分数的补充定义来说明的。有些老师认为0/12不是分数,是因为他们不了解分数的补充定义。再者,根据分数与除法的关系也可以说明0/12是分数。小学《数学》第十册第91页说:“分数与除法的关系可以表示成下面的形式:被除数÷除数 =被除数 / 除数在整数除法中,除数不能是0。在分数中分母也不能是0。用 a 表示被除数,b 表示除数,就是 a ÷ b = a / b (b≠0) 。”由此我们不难看出:在整数除法中,被除数可以为0,这时表示成分数就是分子是0的分数,例如:0÷12 = 0/12,所以0/12是分数。第二:0/12是什么分数?上海教育出版社出版的《小学数学教师手册》第90页说:“在分数的原始定义中,没有包含分子为0的情况,但根据分数与除法的关系,可类推出 0÷ a = 0 / a ( a≠0),所以补充规定:0/a = 0 ( a≠0) ,并称之为零分数。在小学里,对零分数一般不作专门介绍,它在分数减法运算中自然出现。”由此我们可以知道:分子是0的分数(比如0/12)是一种特殊的分数,它们叫作零分数,这种分数一般不独立出现,多出现在分数减法计算的过程中。

《真分数和假分数》 10

  昨天(3月20日),市教研室来我校调研,有幸请张平老师指点了一节数学课:《真分数和假分数》。听了张平老师的点评,有如下启示:

  学生在前一阶段所认识的分数都是分子比分母小的分数,而且这些分数表示的都是一个数量中的一部分和这个数量的关系。本节课上,学生需要认识分子与分母相等及分子比分母大的分数,以及真分数和假分数的概念。教材上的例2是利用学生对分数意义和分数单位的已有认识,通过涂色,先后引出对4∕4和5∕4的认识。教学时,我按照教材的编写意图,按部就班的引导学生认识。出示了分数“5∕4”后,我问学生:“这里把什么看作了单位‘1’?”学生一致认为是“把两个圆看作单位‘1’”。其实,这样的回答是我在设计教学时就已经预料到的,于是我开始引导:如果是把两个圆看作单位“1”,一共平均分成了几份?取了几份?用分数表示是多少?5/8和5∕4一样吗?再想想应该把什么看作单位“1”?学生:“两个圆!”尽管前面有例题的明示“把一个圆看作单位‘1’”,尽管我作了引导,可学生还是坚持他们的想法。无奈,我只得重新再引导一遍。

  课后,张平老师的方法给了我启发:在让学生涂色表示5/4时,先只出示一个圆让学生说单位“1”、涂色,学生肯定会说不够,由此再出示第二个圆,即再出示一个单位“1”,合起来是两个单位“1”,两个圆是两个单位“1”,而不是一个单位“1”。有了这样的铺垫引导,学生就有了深刻的理解。

  另外,张平老师还提到一节课练习的.设计要设计好,要注意层次等。听了张平老师的点评及建议,我深深体会到,每节课前,都要认真钻研教材,要精心设计好每一个教学细节,正所谓:细节决定成败。在一定程度上,课堂是由无数个细节组成的。细节是一种长期潜心的准备,细节是可以挖掘、预设的,我们教师要善于把握课堂教学中的每一个细节,从小事入手,以小见大,进而创造出有效、精彩的课堂。

《真分数和假分数》 11

  《真分数和假分数》是在学生已经学习过分数的意义和分数与除法的关系的基础上进行教学的,这一教学内容将进一步加深并巩固学生对于分数意义的理解,为今后学习带分数、比较分数大小和分数加减法奠定基础。

  因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程,也就是在对事物感知和分析、比较、抽象的`基础上,概括一类事物的本质属性。在概念教学环节中,我围绕教学目标,让学生经历了“涂色——描述——观察——再描述”这一系列过程,用折纸和涂色的方式表示出分数,学生在动手操作、主动参与中潜移默化地复习分数的意义,深化了“平均分”的认识;在动手操作中,学生切实感知了列出的几个分数和单位“1”之间的关系,为真假分数概念的理解做好铺垫,使真假分数的内涵和外延得以显现。训练学生表达对于分数意义的理解,突出将谁看为单位“1”这一难点。在说理过程中,虽然学生的发言展现出认知的矛盾,但在师生的交流中学生逐渐明晰用图形表示假分数的方法,学生对于假分数意义的理解逐步加深,使得真分数和假分数的概念呼之欲出。整个片断,教师为学生安排充分的时间和空间进行自主探究活动,充分发挥学生的潜力,引导学生用已有知识获取解决问题的策略,使学习数学的过程真正成为充满交流和碰撞、有着鲜活感受的过程。

《真分数和假分数》 12

  《真分数和假分数》是一节概念课,是继三年级分数的初步认识后的一节关于分数知识的延伸课。在学习了分数的意义后,学生明确了分数就是“表示把单位1平均分成若干份表示其中的一份或几份”。真分数和假分数虽然在分数的意义上是一致的,但是假分数在意义的理解上却是对原来分数意义的一次飞跃。假分数的意义理解在本节课上应该是一个难点,相对于以前真分数的意义学生根深蒂固,但假分数表示什么?在单位1不够取得时候怎么理解?在生活中假分数又有怎样的现实意义?所以,这节课既是分数意义的延伸,又是对原来分数理解的一次补充。

  在教学过程中,我首先通过让学生叙述自己表示出的.分数的意义,回答分数的分数单位及有几个这样的分数单位等内容,为学生学习真分数和假分数奠定了基础。

  其次充分发挥教师主导和学生主体的作用。用提问的方式启发学生思考,让学生进行合作探究;然后依据真分数和假分数的分类,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念。

  最后通过观察数轴上各点所表示的分数,引导学生将真分数和假分数与1作比较,使学生直观清晰地认识到真分数小于1、假分数等于或大于1的特征,进一步理解了真分数和假分数之间的联系和区别。

  遗憾的是时间把握的不够好,拖堂了,我想主要是这样几个方面的原因:

  1、一开始,提问分数的意义处就冷场了,主要是昨天没有上课,是前天学的内容,学生遗忘了。

  2、在教学5个的地方,引导学生经历了这个过程,拓展的比较多,花的时间也比较多。

  3、在数轴上表示分数,把真分数、假分数与1比较的时候,由于学生的基础及对分数意义的理解还不够扎实,所花的时间也比较多。

  还可能在设计、语言、课堂处理方面还存在一定的问题,请老师们多提宝贵意见!

《真分数和假分数》 13

  学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。这一课的教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。

  分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三。因此在教学真分数和假分数时,我紧紧抓住每个分数的意义,使学生从分数意义上理解和掌握新课的内容。在教学过程中,我首先通过复习分数的意义,每个真分数的意义,为学生学习真分数、假分数和带分数奠定基础。在出示假分数时先回答分数的分数单位及有几个这样的分数分数单位等内容,使假分数的意义的难点建立在已有知识的基础上,并设计了从33到由学生自己用图表示4个13,学生对假分数的意义就很自然地理解了。

  这一环节的设计,是我在经过两次失败的教学后认真反思自己的教学设计及行为,认真解读教材,认真的从学生的角度出发去思考改进的。

  第一次我是这样设计的,我课前预设到学生在表示84时会出现问题,课上学生有说是88的有说是44的还有说是2的等等,而我简单的把它定位到是44+44得来的。接下来的内容学生虽然很顺利的沿袭了刚才的模式,但对于假分数的意义并没有真正的理解。

  有了第一次的经验,我觉得这里出问题是学生对单位“1”理解的不正确,于是做了如下调整。针对单位“1”的不同做了对比,结果是使学生更加混乱。

  经过两次的失败我深深地认识到学生对分数的理解根本在于两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,才能更清晰地去认识假分数和带分数。所有才有了今天这节课上从分析13的分数单位及个数过渡到学生自己用图来表示43,学生理解63、115更是水到渠成。在这里我并没有用课件直接给出43的图形而是让学生自己用图来表示,利用学生生成的'资源为讲授的内容使内容更真实,更便于学生理解,也更具多样性。

  在练习的使用和反馈上我想怎样才能更加有实效,于是我把判断和写分数印成片子发给学生,判断题要求学生判断并改正,在学生使用中发现学生修改形式很多,于是我精心挑选了典型的让他们来展台展示,并向学生渗透了数学方法的简洁性、针对性。这样学生不仅进行了练习,深化了对知识的理解,同时还对学生进行了数学思想的渗透,最大化的发挥了这个教学环节的效用。

  在假分数的教学上,我考虑要充分发挥教师主导和学生主体的作用,通过把5个圆片平均分给4个同学,用提问的方式启发学生思考怎样分,让学生合作探究实际分,从不同的结果中提炼出假分数和带分数,并自然的理解了假分数和带分数的关系,理解了带分数的意义是一个整数和一个真分数合成的数,也为后面的试一试找到了知识根源。

  本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。

《真分数和假分数》 14

  真分数和假分数这节课是在学习分数的意义、分数与除法的关系的基础上进行教学的,为后面学习把假分数化成带分数或整数奠定基础。

  成功之处:

  重视真分数和假分数概念的形成。在例1的教学中,通过涂色表示出分数,让学生通过比较每个分数的分子和分母的大小,从而发现这些分数是比1大,还是比1小。由此得出真分数的概念,即分子比分母小的分数叫做真分数。真分数小于1。在例2的教学中,首先由真分数1/3、2/3的`意义引入,然后问学生如果表示这样的3份,用分数表示是多少,如果表示这样的4份呢?1个圆还能表示出来吗,应该怎么办呢?这时学生想到再用一个圆来表示,取其中的一份,就表示4/3。在教学假分数时应把重点放在假分数的意义上,让学生明确是把一个圆看作单位“1”,把它平均分成3份,表示这样的4份的数;7/4表示把一个圆看作单位“1”,平均分成4份,表示这样的7份;11/5表示把一个圆看作单位“1”,平均分成5份,表示这样的11份。通过观察这些假分数的分子与分母的大小,从而发现假分数的分子和分母相等,分子比分母大,假分数大于1或等于1。

  2.区分11/5和11/15的意义。学生在表示11/5时,由于受图形的影响,受原来学习分数的影响,导致学生会把3个圆看作单位“1”,平均分成15份,表示这样11份的数。通过对比这两个分数,既可以从图中发现错误,也可以利用分数的意义发现问题,还可以从真分数和假分数的特点辨别。

  不足之处:

  个别学生在练习中还是出现了假分数写成真分数的情况。

  改进措施:

  重点教学假分数的意义,特别是要注意假分数是把一个圆看作单位“1”,让学生重点说一说每个假分数所表示的意义。

《真分数和假分数》 15

  真分数和假分数是在概括了分数意义的基础上进行教学的,让学生经历真分数和假分数概念的形成过程,进一步拓展对分数的认识。

  既然真分数和假分数是以分数意义为基础进行教学的,那么这堂课离不开分数的意义,而五(下)的分数意义是用单位“1”来说明的,因此,我认为该内容的教学和分数的意义有着密切的关系。教材安排的例题也是利用学生对分数意义和分数单位的已有认识,通过在图形里涂色,先后引出对4/4和5/4的认识。再利用对假分数的初步认识,通过在图形里涂色表示2/5、10/5和13/5,进一步丰富对假分数的认识。最后在此基础上,引导学生对比较上面例题中每个分数分子和分母的大小进行分类,形成并明确真分数和假分数的含义。

  涂色是认识真分数假分数重要直观手段。小学生的认知往往建立在直观之上的,涂色学生的.操作活动,操作的过程就是直观感知的过程。在涂3/4的过程中体会到:把一个圆看做单位“1”,平均分成4分,涂这样的3份是3/4。同样,涂4/4和5/4也是如此。

  分数单位是认识真分数假分数的重要锲子。教材要求学生先在下面的图形中涂色表示5个1/4,然后要求学生用分数表示几分之几。对假分数的初步认识的锲子就是分数单位,1/4有1个1/4,3/4中有3个1/4,3个1/4就是3/4;4/4中有4个1/4,4个1/4就是4/4。照此推想5个1/4当然是5/4,5/4有5个1/4。

  分类是形成真分数假分数的重要环节。在学生初步认识真分数假分数的基础上,引导学生对比较上面的每个分数分子和分母的大小进行分类,从而形成真分数和假分数的含义,教师依据板书1/4,2/4,3/4, 4/4,5/4,…… 1/5,2/5,3/5,4/5,5/5,6/5,…,10/5,…,帮助学生明确真分数假分数的含义。

  我认为,认识真分数假分数有上面比较重要的三个点,至于丰富真分数假分数的内涵需要练习来实现!

【《真分数和假分数》 】相关文章:

《真分数和假分数》 15篇12-05

《真分数、假分数》 12-01

《真分数、假分数》 15篇01-25

五年级数学下册《真分数和假分数》 03-24

比和比例 12-18

《比和比例》 12-05

比和比例 12-17

《倍数和因数》 03-03

成吉思汗和鹰 03-23

《平移和旋转》 03-04

Baidu
map