- 相关推荐
《比例的基本性质》 优秀
身为一名人民老师,课堂教学是重要的工作之一,借助 我们可以快速提升自己的教学能力, 我们应该怎么写呢?下面是小编为大家整理的《比例的基本性质》 优秀,欢迎大家借鉴与参考,希望对大家有所帮助。
《比例的基本性质》 优秀1
本周三,在教学《比例的意义和基本性质》时,通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫,概括出比例的意义,利用比例意义判断两个比能否组成比例,安排了让学生写出比值相等的比,再组成比例,还安排了四个数组成比例,目的在于加深对比例意义的.认识和理解。在认识比例的各部分名称时,我让学生看书自学,然后让他们自己说说比例的各部分的名称。
此外,组织学生探究比例的基本性质,引导学生“分别算一算比例的两个外项和两个内项的积,你发现了什么?”大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行了有效的探究。
本节课我注重了对学生的评价,用多种语言来激励学生,但是有的地方还是做的不太好。如果在这里感情更深些,更能激起他们的学习兴趣,使她们能更好的参与学习。在今后的教学的实践中我将不断完善自己的教学方法,提高教学质量。
《比例的基本性质》 优秀2
今天上了一堂《比例的意义和基本性质》的实验课,课后的第一感受就是学生一头没有把握好,以致于练习的内容都压缩了。下面对整个教学做如下反省:
一、开始阶段写比这一环节,没有起到任何作用,原本的意图是通过找相等的比后引出比例这一知识点,在教学中,没料到学生举手少,发言少,稀稀拉拉的'几个比,没有任何两个比是相等的。因此这一环节还不如直接出示几个比,直接求比值,从比值中看相等的比,既让学生了解比例是怎么来的(看比值是否相等),又进一步为学习判断两个比是否成比例打下基础。
二、教学比例的意义和基本性质的时候,教学比较含糊,没有突出点,学生在判断的时候,弄不清哪个是用意义在比较,哪个是用基本性质在比较。教学过程应该改为上面这一段,在研究比例的基本性质的时候,抓住关键,让学生多说,说完整。
三、练习难度偏高。从这堂课来看,似乎难度高了些,以致于学生思考时间比较长,这也恰恰说明了前面的环节没有教扎实。如果前面的问题都解决好,这个问题就不存在了,而且还能成为这课的亮点。
《比例的基本性质》 优秀3
今天教学了比例的基本性质。从教材的编排体系来说,本节课的教学环节清晰,先由旧知入手,用求比值或化简比的方法来判断两个比是否能组成比例,接着出示两个按一定比例缩小前后的两个三角形,并分别标有底和高的长度,让学生根据数据写出比例来,并引导学生观察这几个比例的共同特征,从而初步发现比例的基本性质,再接着举例验证规律的成立,总结比例的基本性质,最后应用性质。在教学中不仅重视学生逻辑思维的培养,还能引导学生从不同角度解决同一问题,从而加强发散思维的训练,提高学生的数学素养。但未曾想学生的想法与老师预设的就是不一样,在本课练习时遭遇了他们的“有力阻击”,他们另辟蹊径去思考,而且在那种题型的背景下初听起来似乎有些许道理,实属我所未料。题目是这样的:
哪一组中的四个数可以组成比例?把组成的比例写出来。
(1)6、4、18和12 (2)4、5、6和8
第一位学生(金雁蓉)的回答是这样的:因为这四个数都是偶数,所以它们能组成比例。
第二位学生(毛逸宁)的回答是这样的:因为四个数中有一个是奇数,所以它们不能组成比例。
我的点评:四个数必须都是偶数才能组成比例吗?四个数中如果有一个是奇数就不能组成比例吗?同学们思考一下,你们同意他俩的观点吗?(暂时的沉默)
两位学生都是本班的聪明学生,却都局限在数的外在形式上,看它们是否为2的倍数,从奇数、偶数来思考这个问题,而没有从比例的基本性质来判断。看来学生的第一直觉与老师的预想(用比例的基本性质判断)不一致。而且经他们两个一说,还把部分学生的思维给牵向他们的思路去了。
此刻,是选择老师直接点拨(请大家先把最大的数乘以最小的数,再把中间两数相乘,看积是否相等,然后再作出判断。)还是继续等待学生有正确的发现?我选择了等待。果然,一会儿有学生提出了不同的想法“根据刚才学习的内容,我想到了把四个数中最大的数和最小的数相乘,中间两个数相乘,如果乘积相等,就能组成比例。我是用比例的基本性质来思考判断的。第(1)题6、4、18和12,把18×4=72,12×6=72,所以18×4=12×6,写出比例是18:6=12:4;第(2)题4、5、6和8,把4×8=32,5×6=30,所以4×8≠5×6,不能组成比例。”看来她理解很透彻,已经能学以致用了。
“很聪明,思路清晰,方法正确,讲的非常好,能把前后知识联系起来,依据充分!”
“我刚才也是这样想的!”部分学生附和。
“我认为我说的还是对的!”毛逸宁坚持己见。
“在这个题目中,你的`判断刚巧符合正确结论,但推及其它题目呢?似乎行不通吧?”我提请他自我反思。
他依然有一脸不服气,在思考怎么有力反驳我。我当时为了教学进度没有停留作继续解释。
课后想想,我的做法有些不妥,一来其他学生也许会以为毛逸宁的方法也行得通呢,二来也会影响毛逸宁同学后面的听课效果,他卡壳在那里就听不下去了呀!这是一次失败的应对!如果当时我能给其一个明确的反例,不就可以消除他的错误观点了吗?比如我可以这样说:如果把6换成32/5或6.4,它们四个数不就可以组成比例了吗?(也许他还会反驳现在有了小数或分数了,而不是原来的整数了!)我还可以这样说:如果把5换成另一个奇数3,总符合你的三个偶数和一个奇数了吧,它们不照样可以组成比例?如果当时我能这样处理,课堂教学会更精彩,学生理解会更深刻,只是当时的处理不细腻、也不智慧!留下了遗憾。
我们常说应对生成要灵动,可关键时刻还是拿捏不住,在应对时有些措手不及,免不了做些无效劳动,日后有必要更为深入地了解学情,真正沉下去,做好充分的预设再进入课堂才是教学之上策。反思本节课,以后还需对学生的状况做好充分的预设及准备,使自身能及时应对课堂中出现的各种状况,生成更多精彩的课堂。
《比例的基本性质》 优秀4
上周四上了《比例的意义》和《比例的基本性质》一课,自以为准备比较充分,于是把本应分为两课时的内容在一节课内完成了。最直接的后果是没有充分地进行比例的基本性质的运用练习。
一方面,由于课堂是时间比较紧迫,另一方面,我选择了教材练习6中的一些习题让学生做,大部分学生都能比较顺利地完成。因此我也没有发觉有多大的问题。
但是,等到周五上完解比例,课堂作业本交上来的时候,我却发现了很多问题。比如习题2是“根据比例的基本性质,把下列各比例改写成乘法等式。”有不少学生把“3.2:4=4:5”改写成“3.2×=4×”,显然是把除法转换成了乘法,而不是根据题目要求运用比例的基本性质:外项之积等于内项之积。其余几小题也如法炮制。这样做的学生还不在少数,没有看清题目要求是原因之一,更为主要的是对比例的基本性质不熟悉。最后责任还是在教师,课堂上没有足够的时间供学生通过练习来理解、掌握比例的基本性质。由于比例的基本性质这一课没有过关,自然也影响到了后面的解比例。本来学生对解含有分数的方程就比较容易混淆,什么时候该乘,什么时候该除,一部分学生也没有十足的把握。现在再加上很多学生将比例与从比例转化得到的乘法算式混淆,以及内项、外项如何相乘的问题也容易混淆,所以更加增加了解比例的难度。
要解决问题,还得抓住根本。这节课上,我先是对比例的一些基本概念结合具体数据作了复习,再出示比例20:5=16:4,让学生根据比例的基本性质将它转化成乘法算式。对于比例的基本性质的`基本运用,学生还是没有问题的。当然很容易就把它改写成了20×4=5×16。我又请学生将这个乘法算式改写成比例,说说除了刚才的20:5=16:4之外,还可以怎么改?有什么规律?开始有学生因为受到概念“外项之积等于内项之积”的影响,只能说出20:16=5:4,有些学生心里有不同的想法,却也不敢表达。我于是鼓励学生将20×4=5×16改成5×16=20×4,看等式是否仍成立,又是否能形成新的比例。经我这么一提醒,大多数学生都说出了还可以写成5:4=20:16,5:20=4:16,16:20=4:5等。并且发现只要乘法中的同一边的因数在转化成比例后必须同时是内项或者同时是外项,至于谁在左,谁在右,不影响比例的成立。因此,这也就使等式能转化成多组比例了。在此基础上,我增加了一点难度,将比例的其中一项固定,根据比例的意义或者比例的基本性质写出另外几项。学生根据刚才的发现,认为还有一个外项可以先确定,而乘法算式中和4相乘的是20,那么4已经作为外项,20也只能做外项了,剩下两个数16和5作为内项,放在等号的左边还是右边,比例都成立。我有让学生用比例的意义,即通过求两个比的比值又验算了一遍。
这样,学生对比例的基本性质就有了进一步的理解和掌握,同时也发现解决问题的方法不止一种,在已知比例的一项或几项,要求写出剩余的几项,可用到的方法除了运用比例的基本性质之外,也可以用比例的意义,甚至还可以把比例转化成分数的写法,根据分数的基本性质来解决问题。
《比例的基本性质》 优秀5
比例的基本性质片段1:
师:前面同学们学得真不错,敢不敢和老师来个比赛?请同学们说一个比,老师也说一个比,看看谁最先判断出能不能组成比例?(师生互动)其实咱们同学表现的很优秀,只不过老师用了另一种方法,才能判断的又对又快,想知道是什么方法吗?其实秘密就藏在比例的两个外项和内项之中。请同学们小组参考“导学案知识点二”,自学课本67页第二个红点。
比例的基本性质片段2:
师:同学们,比例中的两个外项与两个内项之间存在着一种关系,你能发现吗?自学后,请将你的发现告诉你的同伴。不过,你最好能举些例子验证一下。
学生们认真地思考着老师的问题,许多学生在“导学案”上写着比例进行着验证。
师:现在,请前后四人为组,将你发现的规律与同伴交流一下,看看大家是否同意?
学生在小组内进行着热烈的交流和讨论,并积极代表小组进行汇报。
全班交流时,教师将学生所举比例故意写成分数形式3/8=6/16,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书:
师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。
教师的这一问,刚开始学生还有疑惑,不过,大家很快发现老师把比例写错了。
生:老师,3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。
师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。
反思:片段1中,学生根据“导学案”自学,学生感觉有点枯燥,教师设计这个互动环节,激发了学生学习的积极性,使学生兴趣盎然的学习下面的知识。
通过上面的教学,对于比例的基本性质,教师没有直接让学生去计算两个内项的积和两个外项的积,很快让学生归纳出比例的.基本性质。而是设计问题情境,在学生运用已有知识判断出两个比能否组成比例后,教师告诉学生自己是用比例的基本性质也很快作出了判断。什么是比例的基本性质?学生探究知识的欲望被激发了。接着,就让学生自己去观察、寻找比例中内项与外项的关系,提出自己的猜想,举例(包括反例)进行检验,与同伴合作交流,自己揭示出比例的基本性质,学生通过亲身经历的观察比例、归纳猜想、举例验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
《比例的基本性质》 优秀6
《比例的基本性质》是在教学比例的意义的基础上进行的,在教学时,我努力将学生自主能力的培养放在了首位,所以在备课时,我紧扣这一主题,所以设计了自主学习、小组交流、全班质疑、分层题组训练的教学过程,通过整节课的教学,使学生的自主学习能力得到了充分的体现,同时也使暴露出了一些问题。
具体如下:
一、因为这部分内容含量不大,也相对来说比较简单,所以我出示了比较详细地自学提示,让学生先自学,后小组交流,我在巡视的过程中,了解到大部分同学在自学进都能解决自学提示中所出示的问题,能基本上达到教师所期望的效果。
二、全班交流时,问题主要集中在了第4题,通过了解,大部分小组能很容易找到解决问题的办法,而个别组则有困难。在教学中我采取了全班共同质疑的方法。在全班交流时,平时教学中的不足就暴露出来。学生在汇报时,不能如讨论时,清楚、明白、准确、完整地表达自己的意见,总有种心里明白,嘴里倒不出来的感觉。我觉得这主要是与我平日的训练有关,学生在平时的课堂上,没有良好的发言习惯,教师没有及时给予纠正、引导,也没有给学生提供很多的机会锻炼,以致没有使学生的口头表达能力得到充分的展示,这是我在今后的`教学中需要特别重视的。
通过教学,我了解到了自己做得比较好的地方,也知道了自己需要努力的地方。我相信自己在以下这些方面会比这次做得更好。具体如下:
1、培养学生自学课本方面。根据学生的情况和教学内容灵活调整自学提示。
2、培养学生的口头表达能力方面。我会在以后的教学中,在课堂上,多给学生提供表达的机会和小组交流的机会。
3、在利用课件方面。能根据教学内容来安排自己的课件,不能为了用课件而用课件,使课件能真正起到其作用。
4、评价学生方面。在平时,多学习、多积累、多向其他教师学习。
《比例的基本性质》 优秀7
在教学比例的基本性质时,首先让学生根据教材所提供的两组数据,独立写成比例,再联系比的前项和后项的知识激趣:“我们学的比例中的四个数也有自己的名字,请自学第43页的内容。”学生自学认识比例的各部分名称、认识内项和外项,完成后进行反馈,并充分应用学生书写的8组比例来强化内外项的知识。然后再进行激趣:“比例中的内项和外项还有一个有趣的规律,请大家分别算出它们的内项和(差、积、商)与它们的`外项和(差、积、商),看看你能发现了什么?”“再随便找几个比例,看看这些比例中有没有这个有趣的现象?”引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,总结出比例的基本性质。下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。
整个教学过程主要由“设疑”、“探究”、“应用”这样三个教学环节组成。在“设疑”这个环节中,我能从学生已有知识入手,精心寻找新旧知识的联接点,过渡自然流畅。采用问题解决式展开探究,让学生自己去发现新问题,探索新知识。“探究”是本课最重要的一个环节,在这个环节中主要引导学生怎样自己的努力去发现比例的“秘密”,归纳出规律性的结论。整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。教学设计中还特别注意发展学生的个性,如要求学生用自己的语言归纳比例的基本性质等。在“应用”这个环节中,强调及时应用及时反馈,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
【《比例的基本性质》 优秀】相关文章:
比例的基本性质 04-05
《比例的基本性质》 03-03
比例的基本性质 06-17
(推荐)比例的基本性质 07-07
比例的基本性质 15篇12-06
《比例的意义和基本性质》 03-28
比例意义和基本性质 11-02
《比例的意义和基本性质》 11-08
比例的意义和基本性质 10-07