- 《找次品》 推荐度:
- 《找次品》 推荐度:
- 找次品 推荐度:
- 相关推荐
《找次品》
作为一名优秀的教师,教学是我们的任务之一,通过 能很快的发现自己的讲课缺点, 我们应该怎么写呢?以下是小编收集整理的《找次品》 ,仅供参考,欢迎大家阅读。
《找次品》 1
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”我这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。在本课的教学中有这样几点做得比较好:
一、注重学生的自主探索。
教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从5个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了8个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了9个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
二、注重数学思想方法的培养。
在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。这过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。让学生经历探索数学知识的过程。围绕问题的'解决,让学生经历探索数学的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受数学思想方法,提高他们的数学思维能力和解决问题的能力。
三、重视操作活动,发挥主体作用。
本节课的活动性和操作性比较强,沈佳老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把5个零件和8个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。
虽然本课从整体上来看还是比较成功的,达成了预设的教学目标,但是有些细节问题还是应该注意的。如:对于孩子们发言的点评还应该再有一些针对性;时间的控制再合理些,如在5个中找次品的时间再压缩一些为8和9再节省出一些时间会更好。让课堂时间分配更加合理。
《找次品》 2
《找次品》是人教版小学数学五(下)数学广角的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,连自己都看不懂的内容,学生能听懂吗?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。在教学过程中,我首先让孩子们明白两点:
第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;
第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。
理解了这两点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?并提问:还有几个也能1次就能找到次品?让孩子们知道2~3个物品只需要1次就够了。接着学习4个,首先问孩子们能不能1次就找到次品,孩子们回答能够。是呀,在运气好的'情况下是能够找到的但是能不能保证找到呢?这样让孩子们在思考的过程中体会到了要考虑运气最坏的时候也能找到才叫要保证。就4个的分法就多了:(2,2)、(1、1、2),这两种分法都需要2次才能找到。接着教学8个,9个,都只需要2次就能保证找到,到了10个就需要3次了……,在教学的过程中,给学生建立模型:2~3个——1次,4~9个——2次,9~27个——3次,这样就能让孩子很快的确定称的次数,然后根据次数来确定的自己的方案,这样的话,学生确定方案时就不局限于一定要按照书上的方案:能平均分成3份的就平均分成3份来称,不能平均分成3份的:2组相等,另一组与之相差1,还有很多种分法。
这样的教学我感觉学生接受起来还是比较容易,孩子们也很感兴趣。
《找次品》 3
《找次品》是人教版教材五年级下册数学广角里的内容,属于一节思维训练课,通过找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系,逐步优化找次品的方法。
以找次品这一操作活动为载体,让学生通过观察、试验明白解决问题的多样性,体会运用优化方法解决问题的有效性。主要培养学生的'优化意识和逻辑推理能力,同时掌握找次品的最优方法。
本节课先分析从5个零件中找一个次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?教材虽然给我们提供一个基本教学思路,但是教学过程如何展开;优化在什么时候妥当;还需要教师充分地备好课。
充分的动手操作和课件直观演示是学生分析找次品次数的基础。本节课是属于思维训练课,所以难度较大,比较抽象,学生学起来会有困难,特别是对学习能力中下的学生。这节课我给每个学生提供了学具,让学生借学具模拟称一称,并小组交流方法,同学间相互帮助,让学生都能理解找次品的基本方法和基本原理,为接下来符号化分析称球过程打下了基础。课堂上还有一部分同学一直很安静,那就是他们的思维根本就没有调动起来。
本节课中教师力图渗透一些基本的学习方法,如观察,比较,分析、猜测等方法始终贯穿着整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次品的方法乃至认识更多更广的生活世界,这也是我们教师要在教学中经常要体现的重要思想。
《找次品》 4
作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。
一、美好的预设≠理想的课堂
找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。
我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。
二、精雕细琢,和学生一起收获着
课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。
这次我是这样预设的`,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。
本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。
“学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的预设,有效的课堂需要不断反思。
《找次品》 5
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
一、创设情景通过身边生活实例。
为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。以前的视频画面距离学生的生活较远,孩子们兴趣不大。集体备课时大家建议这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。
二、难点转化降低教学起点。
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
三、层层推进。
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的.体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
四、教学方法。
在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。不足之处:
由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法,没有反馈。
《找次品》 6
《找次品》是人教版小学数学五年级下册第七单元《数学广角》的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。上这样一课,是对自己的一次挑战。备课初衷我认为这一课,是在学习新课标后:从“双基”到“四基”,从“两能”到“四能”,我的新理念能得到充分的应用的一课。对基本思想的认识,这里的思想方法,不是前几年的教学实验“数学思想方法”这里指的是支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。而《找次品》一课恰恰能把这一理念应用得淋漓尽致。
一、猜想验证是一种重要的数学思想方法
正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中我们要重视猜想、验证思想方法的渗透,以增强学生主动探索,获取数学知识的能力,促进学生创新能力的.发展。本节课我就让学生经历了“探究—猜想—验证—推理—归纳”的过程。从3瓶探究中建立找次品的基本模型,然后通过自主探究获得8、9瓶称的次数最少的方案,进而猜测最简方法,为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
二、推理能力的培养
新课标指出:推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理包括合情推理和演绎推理在本节课教学中两者都有具体体现。在学生独立探究、观察后发现,在找次品次数最少的这些方案中都把待测物品分成3份,于是得出结论,要使找次品次数最少,就要将待测物品分成3份。这一过程属于合情推理。而在对总结的结论用8瓶和9瓶进行小组验证这一环节中,又恰恰运用了演绎推理。两种推理功能不同,却相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。学生在尝试总结运用找次品最优策略的过程中发展了推理能力。
三、基本活动经验的认识
对学生而言,所谓数学的基本活动经验是指:围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。基本活动经验是学生的亲身经历。让学生获得基本活动经验,本质上让学生经历数学活动直观,但必须建立在学生亲身经历和感知的基础之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及讨论的时间偏少,但我和学生的心情一样愉快,因为学生有了探索的欲望和一定的解决问题的能力,这也是我最大的收获。
四、存在的不足
这节课也存在不足,由于是40分钟课,组织学生动手操作与合作交流不够充分:如果是60分钟课,在独立探究和小组验证活动中我会增加2—3分钟以便学生充分感知寻找最优策略的必要性;并且在独立研究后我会用4—6分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境界,达到促进学生自主学习的根本目标。
总之,这次活动给我了一次很好的锻炼、成长的机会,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路!
《找次品》 7
在教学过程中,我注重体现数学知识的逻辑顺序,强调数学思维的一般过程,着力培养学生解决数学问题的意识和能力。比如在课中先安排了从3个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律总结,我觉得从3个中找次品是最基础的知识,这个方面学生有了自己的理解,对于后面的知识就有了更好的把握;之后安排5个待测物品,让学生感受解决问题策略的多样性;再安排9个待测物品,并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。
在教学中,我让学生通过对学具的操作、试验、讨论、研究,找到解决问题的多种策略,也很好的培养了学生团结协作的精神及动手操作的能力。在活动完成后,要求学生汇报结果,并在黑板上呈现过程,让学生感受到同一问题的多种解决方案,同时也为后面寻求最优的解决策略打下了研究、分析的基础。
在组织引导后,重点放在猜测、归纳、推理的过程,由此促进学生养成勤于思考,勇于探索的精神。教学时,引导学生从众多繁杂的方法中,简化解题的过程,找出最优的解决策略。课中先让学生观察各种解决策略,引导学生发现把待测物品平均分成3份称的方法最好,在此基础上,就让学生进行猜测:这种方法在待测物品的`数量不是3的倍数时是否也成立呢?从而可引发学生进一步进行归纳、推理等数学思考活动。
当然,在课堂教学中,我还是存在着很多的问题有待改进。比如,这里我把教学内容分为3的倍数和不是3的倍数来教学,这里的分析便存在了欠缺。3的倍数和不是3的倍数,在这里其实都是按照分称3份来教学的,不能平均分的待测物品那就尽量把它分得平均。其实整个思想应该是统一的。所以归根结底还是对教材的领会还不够透彻,所以在以后的教学中我还是需要花更多的时间去领悟其中的教法和思路,如果参透了教材那么就能引入更清晰、明了的方法去教授这节课,课堂内容也会变得更加充实,整个知识重点也就更易把握。
《找次品》 8
这两天教学了“找次品”一课,它是五下数学广角里的教学内容,是一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。
教材的编排是先分析3瓶钙片中找一瓶次品的方法和次数,初步认识找次品的基本方法;然后再来分析在8个零件中找一个次品的方法和次数,这时进行优化,并且延伸到9、10、11个零件中。本节课我创造性的使用了教材,先从3瓶钙片中找一瓶次品入手,让学生充分感知把待测物品的.个数分成能平均分成3份可以更简便。
在练习5瓶钙片时,有部分学生仍平均分成2份的方法,虽然适用于这道题,但换成例2的8个零件时,明显发现方法不够简便。所以,在从8个零件中找一个次品时,我首先让学生小组内交流都有哪些方法可以找出次品,分别用了多少次?并通过列表的方法进行对比分析。学生在分析中渐渐发现找次品的快捷方法,并在我的引导下发现规律,同时感受平均分和不平均分对寻找次品次数的影响,在归纳出“找次品”的最优策略:平均分成3份,如果不能平均分的话,他们之间只能相差1,这样才能使所需次数最少。
在整节课中,我通过幻灯片的直观演示让学生分析找次品次数,但发现学生学起来还是会有困难,特别是语言表述上。所以,在练习中我让学生借助学具模拟称一称,并在小组中交流方法,同学间相互帮助,让学生都能理解了找次品的基本方法和基本原理,明显效果好多了。最后,我让学生在自己的认知基础上,了解课本中的补充材料,让学生进一步发现所测物品数目与至少需要次数之间的关系。
对于此类找最佳策略的题目,必须要学生充分经历学习的过程,在自我操作中感受其规律,并能进行应用,而只通过直观演示还是不够的。
《找次品》 9
在上这课之前,我已有所耳闻——《找次品》这一内容比较难上,教学完之后确有实感。我在试教时(五1班),学生们的表现比较活跃,且能跟着老师的预设完成教学目标,可是这堂课却恰恰相反,可能与五2班学生的学风有一定的关系。经过反复琢磨,反复推敲,可能是由以下几方面造成的:
(1)学生的自主探索活动较少,导致学生印象不深刻。在整个教学活动中,学生使终被老师牵着鼻子走,自主探究活动少之又少。例如:在学生自主探索5个物品中找出一个次品时,学生们是在思考,可更多的是想到一种策略后,就不去思考别的方案了。即便其他同学有别的想法,也无瑕去顾忌。因此,在这样的心境下学习,效果就不佳了。
(2)形象教学还未铺垫好,逻辑思维就无法跟上。学生的思维还需要表象的支持,在本堂课表现为实践操作。当学生们还未真正理解5个物品中找出一个次品的.方案时,急匆匆进入下一环节——9个物品中找到一个次品,显然这一步迈得太大了些。应该先让学生总结出5个次品中找到1一上次品的一般方法,总结、提炼之后,升华到逻辑思维的层面,之后再探究9个物品中找一个次品,会使课上得更全面、更有效,孩子们学起来也会变得轻松些。
(3)课堂气氛调动不够。整堂课上完之后,总感觉很压抑,无论是老师的表现还是学生的表现,这是为什么?分析之后,我认为最为突出的一点就是老师没有把持到学生的“现状”,一个知识点教学之后,学生的学情是否已经改变?是否能接受下面的知识?这些,都无从考证。只凭老师单方面的意愿进行教学,按部就班,低效乏味!
这次教学展示活动给我了一次很好的锻炼机会,找到自身的不足,方可对症下药!我深信,只要我们想方设法摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长辅垫出一条坚实之路!
《找次品》 10
《找次品》是属于一节思维训练课,以“找次品”这一操作活动为载体,让学生通过观条、试验明白解决问题的多样性,体会运用优化方法解决问题的有效性,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的.最优方法。本节课先分析从3瓶钙片中找一个次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,进行优化,并且延伸到10、11虫个零件怎么分。教材虽然给我们提供了一个基本教学思路,但是教学过程如何展开,优化在什么时候妥当还需要教师充分地备好课。
充分的动手操作和课件直观演示是学生分析找次品次数的基础。本节课是属于思维训练课,所以难度较大,比较抽象,学生学起来会有困难,特别是对学习能力中下的学生。这节课我给每个学生提供了学具,让学生借学具模拟称一称,并小组交流方法,同学间相互帮助,让学生都能理解找次品的基本方法和基本原理,为接下来符号化分析称的过程打下了基础。课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。本节课中教师力图渗透一些基本的学习方法,如观察、比较、分析、猜测等方法始终贯穿着整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好地学。
《找次品》 11
《找次品》 《找次品》一课是以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。在教学中,我主要力求体现以下三个方面的教学设计意图。1.从简单问题入手,理解找次品的含义,并用直观方式清晰地表达推理过程。
学生在本单元学习之前很少接触“找次品”问题,没有相关的学习与生活经验。而教材中的“次品”与日常生活中提到的“次品”有所不同:它指从外表看完全相同的零件,其中重一些或轻一些的那一个就是“次品”。首先,让学生认真读题,充分理解题意,理解“找次品”的意思,了解“正品”“次品”的含义,丰富生活经验。3个零件中有1个较重的次品,任意取2个放在天平两端,天平有可能是平衡的,也有可能是不平衡的。非常重要的.一点,这里所指的天平并不是一架实物天平,而是利用天平平衡原理抽象出的数学化形式的天平,借助它进行逻辑推理。说理时,引导学生尽量用规范的语言“如果天平平衡……如果天平不平衡……”来表述。在此基础上,让学生把推导的过程用直观图或流程图辅以文字说明来记录和推导,这一点尤其重要。2.充分经历“比较——猜测——验证”的探究过程,理解找次品的最优策略 “至少称几次能保证找出次品”是理解的难点,这里要让学生理解“能保证”是指每一种可能的情况都要考虑,“至少”就是指在保证一定能找出次品的各种方法中称量次数最少的那种方案。“找次品”的最优策略有两个要点:一是把待测物品分成三份,二是尽量平均分。教学时从“8个”的情形开始,通过小组合作的方式,让学生将推理过程用直观图清晰、简洁地表示出来,然后将找次品的不同方案记录下来。从8个零件中找次品,学生会很自然地想到平均分成两份(4,4),但会发现运用这种分组方法称的次数不是最少的,分成3份(3,3,2)的方法才能使称的次数最少。使学生体会到只有将次品确定在更小的范围内,称的次数才会越少。有了在8个零件中找次品的经验,接下来处理在9个零件中找次品的问题时,受天平平衡原理的暗示,学生会自然想到(4,4,1)和(3,3,3)的分法。把两种方案进行对比,感受到分成三份的情况中,平均分的方法称的次数最少。如果不能平均分呢?再去研究在8个零件中找次品的最少次数,会发现尽可能平均分可以使称的次数最少。最后层层递进,逐渐感知理解找次品的最优策略。3.关注个体差异,注重“说”的训练,初步感受“化归”思想 通过练习进一步理解巩固找次品的问题,在练习中要对学生进行分层要求。在找次品的过程中,允许学生借助直观学具推理、用直观图或流程图直接推理、用口头叙述。让学生多“说过程”,通过说体会到“尽可能将待测物品平均分成三份”的最优策略,培养逻辑思维推理能力。有了例题的学习经验,学生在练习时就可以直接利用前面已有的结论。如“做一做”中将28瓶盐水分成三份(9,9,10),称一次后就转化为“从9个或10个物品中找次品”的已学知识。
《找次品》 12
本单元以找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。同时,进一步理解随机事件,感受解决问题策略的多样性和优化思想,培养学生的观察、分析、逻辑推理能力,并学习如何用直观的方式清晰、简洁、有条理地表示逻辑推理过程。
成功之处:
1.重视感受解决问题的多样性和优化思想。在例题的教学中,首先通过动脑思考怎样从3瓶钙片才能找出次品,并能用简单的'过程清楚地描述出来。然后再从8个零件中找出次品,并让学生思考至少称几次能保证找出次品,在这一过程中,学生独立探索,并将自己探索的情况填入课本中的表格里。探索情况如下:
8(1,1,1,1,1,1,1,1)分成8份至少称4次
8(4,4)分成2份至少称3次
8(2,2,2,2)分成4份至少称3次
8(3,3,2)分成3份至少称2次
通过观察学生发现当平均分成3份时,称的次数最少,这3份应使多的一份与少的一份相差1。根据这一规律再让学生找出9、10、11个零件中的一个次品,至少称几次才能保证找出次品,并感受到把待测物品要尽可能的均分成3份,进一步明确找次品的最优方法,从而体会到优化思想的重要性。
2.理解题目中的关键词。找次品中的“至少称几次能保证找出次品”是什么意思,先让学生理解关键词的意义,然后教师明确“能保证”就是在运气最差的情况下也能找到才叫保证,而“至少”就是指在所有各种方法中,称量次数最少的那种方案。
不足之处:
1.在探索多种方法的过程中,用时较多,导致时间分配不均匀,练习时间少。
2.对于运气好的情况明确的不是很清楚,可以直接告诉学生待测物品无论是多少个,称一次是有可能称出来的。
3.对于不知道次品是轻或重,还需要再称一次才能得出答案也没有明确。
再教设计:
可以改用分组探索,每组探索一种,集体交流时共同总结归纳找次品的最优方案。
《找次品》 13
从真正开始设想这节课到开课大概有3星期,在这二十来天的时间里,我轮回着与许冬丽导师设计教案、试教、讨论、修改这一过程。直到最后一次的修改是在开课前一晚上,改完心里似乎是有那么一点肯定的,但上完后才直到有那么多的遗憾!
首先我不得不佩服许冬丽导师的眼里,她一眼看出了我上课时的情绪低沉。真的,这节课我没有试教时的状态好,能全身心的投入,情绪亢奋,能引领学生的情绪与状态。这是第一个遗憾,也是我以后的教学生涯中必须要避免。
接着是我课堂调控能力的不足,在教2个物品里找次品的环节中,由于自己没有好好引领,导致学生被我多余的`举动与语言给糊涂化了。要知道这是最简单与最开始的环节啊,在这里就弄不清楚,接下来就可想而知了,学生根本就没有那种主动性。再加上我在情绪的调控上失败,整节课给自己的感觉就是很拖很拖。
最后来说说我教学语言和机智的欠缺吧。首先是课前唱歌,本来想让学生调整状态的,没想到学生说不会唱,我在那会儿也没想到要玩个游戏什么的,也就这么突兀的就开始上课了。接着就是我在教学中语言重复不精炼不规范。有些问题如果老师问的精准就可以避免学生不必要的思维发散,从而可以节省时间,加大课堂教学密度!这个需要我在今后每一节上课中不断注意,不断改进才能慢慢达到的,而不是一朝一夕就能改得过来的。
当然这节课也是有优点的,毕竟有许冬丽导师的大部分心血在里面。
首先是教学具的轻便,可重复利用,且直观易懂。吹塑纸,在小时候作手工的时候接触过,但不知道它叫什么,长大之后就再也没有看过了,以至于许老师说到吹塑纸的时候我还是很纳闷这个怎么用,原来只要用水就能使它贴在黑板上了,非常方便。
接着就是教学环节设计的层层递进,思路非常清晰。我想如果不是自己没有好好把握,换成许冬丽导师去上的话,肯定是很精彩的。
虽然有太多的不足与遗憾留下来,但我并不泄气。我知道进步需要在不断的失败,然后不断的反思才能得到的。我也知道在教学道路上我还有很长的路要走,而这一路上又有太多太多的东西等着我去学习与探究!
《找次品》 14
本周四我与孩子们学习了《找次品》,《找次品》是五年级下册数学广角里的教学内容,我认为这是一节生活思维训练课。
问题导入——切近生活
“商品店有86个玩具,但是有一个是次品,而且这个次品较轻”。抛出这个问题,有的学生问什么是次品?大家根据自己的生活经验畅所欲言:轻重不达标,光滑度不达标,含量不达标等等,孩子们的思维一下打开了。今天研究的玩具中的次品属于那一类?轻重不达标。(板书:找次品,轻重)
“轻重不达标,用什么工具能找出来?”学生想到两种工具:天平和秤。“大家说说你会用什么工具来找这个次品?理由是什么?”最后大家一致认为用天平节约时间,因为天平就有两种情况:平衡和不平衡。(板书:天平,平衡不平衡)
有了生活经验做铺垫,学生学习起来思维活跃。
探究新知——退而求之
“86个玩具太多,研究起来困难,怎么办?”“从小数开始研究!”对!正如华罗庚爷爷所说:善于退,足够地退,退到起始,而不失去重要地步,是学好数学的决窍。即对于表面上难以解决的问题,需要我们退步考虑,研究特殊现象,再运用分析、归纳、迁移、演绎等手法去概括一般规律,使问题获解。
我们从2个开始研究,又研究了3个。到第4个时,孩子的方法就不一样了:先分成(2,2)和(1,1,2)来秤,都是至少两次就保证找出轻的次品。5,6,7都跟4一种情况,孩子们方法还是集中在分成两份或者三份,但至少的次数是一样的。
8个,同学们的方法就多了。小组讨论集体辩论,发现开始分成三份(3,3,2)用的次数少,就能保证找出次品。
“三份怎么分?”这里联想到抽屉原理中的`“尽可能平均分”,因为最多的份与最少的份相差1。
“为什么分成三份,保证找到次品的次数最少呢?”同学们又进行了深度思考。第一次,尽可能的平均分成两份,确定次品的范围为总数的二分之一;分成三份,确定次品的范围为总数的三分之一;那分成四份是不是就是确定次品的范围为总数的四分之一,以此类推呢?
孩子们又以小组为单位,展开了深度思考。两份,三份,就能一次保证判断出次品在哪一份中。而分成四份,一次不能保证找出次品在哪一份中?需要两次才能确定次品在哪里?也就是两次才确定次品在总数的四分之一,那么比分成三份,一次确定次品的范围为总数的三分之一小。由此得出结论:尽可能平均分三份,是为了缩小次品的范围,而且是最小的,这样找次品用的次数就少。
拓展提升——总结规律
学生自主找9-28个物品中的次品,引导学生发现规律。前提:有一个次品轻或者重。保证找到次品的最少次数,规律:1-3个秤一次,4-9个秤二次,10-27个秤三次,以此类推。
本节课,大部分学生的思维产生跳跃,体验找次品策略不断优化的过程,思维也达到了一定的高度,培养学生良好的数学思维能力。让学生能系统而有步骤地感受到数学思想方法,并把重要的数学思想方法转化为学生可以理解的简单形式。
《找次品》 15
一、教材简析:
“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
二、设计思路:
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
三、教后感想:
(一)情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的.学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化,降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3盒木糖醇中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进,符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)知识拓展,巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在备课时我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。
(五)运用多种教学方法,提高效率
在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
不足之处:
1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法没有反馈。
2、我在设计板书时,进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但分析天平两边出现的两种情况,不很清楚、易懂。究竟什么方法更利于学生理解,还值得探讨。
3、学生对实验过程的表达能力还有待提高,一些学生说不明白,甚至所说的别人听不懂。
【《找次品》 】相关文章:
《找次品》 12-01
《找次品》 08-15
找次品 08-16
《找次品》数学 02-27
《数学广角—找次品》 12-01
《找次品》 15篇01-12
找次品 15篇08-16
《找次品》 15篇08-20
《找次品》 (15篇)01-25