- 相关推荐
八年级下册数学
作为一位到岗不久的教师,课堂教学是我们的工作之一,借助 我们可以学习到很多讲课技巧,怎样写 才更能起到其作用呢?以下是小编整理的八年级下册数学 ,仅供参考,希望能够帮助到大家。
八年级下册数学 1
下面是我在教学中的几点体会:
一、教学中的发现
(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:
1、增根是分式方程的去分母后化成的整式方程的`根,但不是原方程的根;
2、增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;
(3)列分式方程错误百出。
针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
二、教学后的反思
1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。
2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。
3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。
4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的的实用性,符合《课标》学习有用的数学的要求。
5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。
八年级下册数学 2
对于课题学习选择方案的教学,我形成了如下的 :
一、成功之处:
1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。
2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的`还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。
3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。
4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的的实用性,符合《课标》学习有用的数学的要求。
5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。
二、不足之处:
1、在解决学生困惑时,学生们的交流、合作应加以完善,注意掌握尺度做到收紧有度。并且对学生的课堂表现不满意时,情绪有一次失控,对学生的学习不利,今后一定要杜绝。
2、课堂内容设计过多,不利于学生体会本节课的重、难点,即重点不够突出!
3、在课堂的教学中,学生回答的偏少,教师讲述的过多
4、课时提前了3节课,学生没有学习一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程组。而直接探究课题学习选择方案为时过早,学生没有知识准备,所以理解上有难度。
八年级下册数学 3
本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的.教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第三环节,定理的选择:一道判断有几个平行四边形的题目,判断过程中让学生选择适当的定理来证明;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第六环节,辨别两个判定定理的易混点:一个是一组对边平行,另一组对边相等,另一个是两条边相等,另外两条边也相等;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。