圆柱的体积 【热门】
身为一位优秀的老师,教学是我们的任务之一,写 能总结我们的教学经验,那么你有了解过 吗?下面是小编收集整理的圆柱的体积 ,仅供参考,希望能够帮助到大家。
圆柱的体积 1
在教研组评课的时候,程老师说过这样几句话,我总结如下:
1、 这节课讲的是什么?
2、 学习这些知识为了什么?
3、 这节课讲给谁?学习这些知识的学生处在什么水平?
从这几个点反思了自己的本节课:
一、 这节课讲得是什么?
“是什么”的问题我的理解是理清楚本节课的教学内容,教学目标和重难点,教师要做到心中有数。
在备课时教师首先要关注教材,尊重教材,尽自己最大的力量认识理解教材的编写意图,理解教材所传递出来的信息。同时教师在阅读教材时要清楚教学内容在数学知识体系中的作用,对前面学习内容的延续,对后面学习内容有什么作用。
前面已经学习了“长方体、正方体”立体图形体积的计算,圆柱体积的学习是学生已有知识的延续,同时为后面圆锥体积的学习做好了铺垫和准备。在整个立体图形的学习中起着承前启后的作用。
本节课重点是让学生理解并掌握圆柱体积公式,并能够熟练应用计算,难点是让学生经历圆柱体积公式的推导过程。
二、 将这节课是为了什么?
数学来源于生活,有应用于生活,生活中处处有数学,学习数学知识的目的就是为了应用。那么本节课所学的知识就是为了计算一些圆柱体积的大小,这是这节课的目的所在。
三、 这节课讲给谁?学生的水平。
这一点就是提醒我们在备课时,充分的备学生,在充分理解教材的基础上。再重新放空自己,把自己摆在学生的位置,重新学习这部分知识。以学生的.姿态来备课,读懂学生是上好课的有力保证。
“圆柱体积公式的推导”是在学生学习了圆柱的特征、表面积计算以及“长方体的体积”“正方体体积”等相关立体图形的基础上教学的,学生拥有继续学习的旧知识和经验,即:
1 知识铺垫:学生知道“体积”的含义及计算体积的方法;
2 经验铺垫:在研究圆的面积时,采用“割补转化”的方法,渗透了一种探究学习的思想方法;
四、反思本课的落实情况
导入部分,先复习了“圆柱”的特征, 然后通过解读课题,复习了“体积”的概念,自然的引出“我们学习过哪些图形的体积公式”复习了长方体正方体的体积如何计算,并重点分析了立体图形的统一公式,说明二者的体积与“底面积”和“高”相关。从而创设问题情境,引导学生运用已有的生活经验和旧知,制造认知冲突,形成了“任务驱动”的探索氛围。
探究部分,为学生提供了观察思考及交流讨论的平台,由于教具的限制,没有让学生充分的进行动手操作。这比较遗憾。通过多媒体演示让学生在观察中逐步经历计算公式的推导结果,并发展学生的空间观念。
练习环节安排注重练习生活实际,让学生应用自己推导出的计算公式解决引入环节中的两个问题,第一个问题数据提供,直接利用公式进行计算,同时在巩固两个计算。之后再让学生解决老师手中的圆柱体积,这时需要让学生测量相关数据。让学生认识数学的价值,切实体验到数学其实就在我们身边。并且学生在解决问题的同时推导出了已知半径和直径计算圆柱体积的公式。
本节课最大的不足就是:学生在练习中教师关注度不够全面。
圆柱的体积 2
一、摆脱情境困扰,追求简单高效
圆柱的体积教学是小学几何知识的重头戏,教学这节课时,我首先搜集了网上的大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用创设情景,由圆柱体水杯装水,引出圆柱体,再由圆柱体水的体积引出圆柱体体积的求法。板书“圆柱的.体积”课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。
二、建立切拼表象,渗透极限思想
学生进行数学探究时,为了让学生充分体会,我把操作的机会给了学生。让学生分组试验探究,接着再结合多媒体演示让学生感受,把圆柱的底面分的份数越多,切开后拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。我使用了—————把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程。让学生一目了然。
三、练习层层递进,弱化繁琐计算
为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:
1、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
2、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2 h。
3、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2 h。
4、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2 h。
在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。
圆柱的体积 3
今天上了《圆柱的体积》一课,觉得比以前上得轻松,回到办公室细细品味上课的过程,颇有几分感受:
在本课中,当学生面对新的问题情境—“圆柱的体积该怎么求?”时,能从圆的面积公式的推导,根据已有的知识作出 “转化”的判断。当然,由于知识经验的不足,表达得不是很清晰。但学生的这些都是有价值的。这些“猜想”闪烁着学生智慧的火花,折射出学生的创造精神。在此基础上,让学生以小组合作方式,利用已切开的圆柱体教具进行验证,在讨论声中,学生获得了真知。可见,教师要保护学生的创造热情并给以科学探究方法的引导,以发展学生的创造性。在这点上,我对学生的探究精神给予了充分的肯定。这节课再次让我知道了,相信学生的创造力是我们设计教法的前提。
在引导学生解决“粉笔的体积”等这个问题时,课堂上有学生把它当作圆柱体积来求,提出:“误差这么小,是可行的。”而且那位学生要求的仅是一个大约的数值,所以用这种方法可以。但这种计算粉笔体积的方法可行吗?如果我不提出疑义,也不加以说明,就会给学生造成“圆台的体积可以用这两种方法来计算”的.错误认识,对学生的后续学习会造成一些不利的影响。我就这个问题引导学生进一步探索,使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通,懂得知识并非一成不变的,有其发展性,初步理解三维空间物体与二维平面图形的联系与区别,为进一步学习积累经验。学生在探索过程中,虽不能很快获得结论性的知识,但却尝试了科学探究的方法,形成良好的思维品质,增进了情感体验。这样,既保护了学生的创造性,又保证了教学内容的科学性,就学生的发展而言,谁能说让学生经历这样探究的过程,不也比获得现成的结论更富有积极的意义?
圆柱的体积 4
今天教学“圆柱体的体积”。接受昨天学生提出的“只学不会的”学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?
面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的'方法”,谁知道这个“积极分子”不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片( ),分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:“高迈, 给大家解释一下,圆片是什么?圆片的个数又是什么?”“圆片就是圆柱的底面积,圆片的个数就是圆柱的高”。话音刚落,掌声响了起来……。
这种推导圆柱体体积的计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为“把圆柱体进行等分转化成长方体体积来推导”做铺垫的。谁曾向,这种用“堆”的过程来说明“底面积×高”计算圆柱体体积的道理,实际是“积分”思想,这是要到中学才学习的,学生不好理解的,竟然跑到“预想方法”之前了。真是“计划不如变化快啊”。课堂上的“精彩总是不期而至”啊。试想,如果,刚开始他举手,我就像以往一样“压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。
圆柱的体积 5
《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。
c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。
d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。
e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。
二、在教学策略方面
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。
三、在教学技能方面
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的.知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。
四、教学要达到三个目的
一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。
二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。
三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
圆柱的体积 6
本节课教学设计从回忆旧知入手,通过猜测、观察、交流、验证、归纳等数学活动,让学生经历探索新知的全过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。
新授部分,经历了问题引入、猜测、自主探索、合作交流、验证归纳五个环节,环环相扣,步步深入。合作交流这个环节给了学生充足的时间去探索、交流,通过把圆柱切拼成近似的长方体,再对比二者的体积、底面积、高之间的.联系,推导出了圆柱的体积计算公式,从而得出圆柱和长方体有着相同的体积计算公式,然后要求学生回顾一下我们是怎样得到“圆柱体的体积=底面积×高”这个结论的。经历了公式的推导过程,也让学生体验了数学问题的探索性和挑战性,感受到数学思考过程的条理性和数学结论的确定性。
课堂上,我将引导启发、自主探究与合作交流等多种教学方式相结合,借助于多媒体课件化静为动,把教师说不清道不明,学生不易理解的圆柱切拼成近似长方体的转化过程一目了然地展现在学生面前。教学设计充分体现了“以学生为中心”的思想,真正方便了学生学习。做到根据教学内容的实际需要,充分发挥多媒体技术的优势,突出教学重点,突破教学难点,丰富了教学内容,精彩了课堂,激发了学生的学习兴趣。
学生在数学课堂上建立起新概念、习得规律之后,必须完成一定数量的数学练习题,才能巩固所学知识。本节课,我充分挖掘习题的价值,在巩固中拓展,让学生的思维不停留于某一固定的模式中,而能灵活应变,变有限为无限,让不同层次学生的思维水平在原有水平基础上都得以提升。
不足之处:课件代替了板书(由于课前班班通出现小小故障,我在打开课件时有点着急,课件出示错误,又耽误了时间,没有在黑板上板书课题)。时间分配不够合理,练习时板演学生太少(合作交流环节给了学生大量的时间去探索、交流,在练习时已经没有足够的时间了,就让一个学生板演了,致使后边的拓展提高没来得及进行,就进行检测了)。教师的评价方式单一。
改进措施:每节课要准备充分,提前候课,避免出现差错,耽误时间,练习量不够或完不成任务。课堂上要多关注中等偏下的学生,老师的评价机制要多样,让他们学会倾听,乐于学习,多给他们展示交流的机会。课堂上课件只起一个辅助作用,不能喧宾夺主。
今后还要一如继往地做好日教研,上完课及时与本组成员沟通、交流,让课堂教学更高效。
圆柱的体积 7
学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的'哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。
非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.
圆柱的体积 8
一、让操作更详实,留下思考的痕迹
《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系
数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的.知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握
通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时
圆柱的体积 9
在新课程不断向纵深推进的今天,我们的课堂既要继承传统,把课上杂实。同时,也要把课上厚实。在教《圆柱的体积》一课时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识,并利用新知去解决实际问题。对此,我作如下反思:
(一)在学习情境中体验数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。
在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出你能计算圆柱体的体积吗?这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的'长方体,然后让学生在小组内利用手中的学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体 ,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。。
由此至终让学生经历了做数学的过程,并伴随着问题的圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。
(二)在观察操作中探索新知
数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。
在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。 你有什么发现?你是怎样想的?等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。
(三)在练习中巩固新知,提升能力
《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。
(四)在本节课中的不足之处
由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑,在今后的教学中还有待于提高。
圆柱的体积 10
圆柱的体积这一课的主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,不过应该注意时间的控制,不能花费太多的时间。
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想-观察-动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的'体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。
在教学中,我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
当然,本节课还存在很多不足之处,在学生们动手操作时,因为想给学生充分的思考和探究的时间,以至于后来的练习时间不够。在今后的教学中我要特别关注学生的学习过程,把握课堂教学时间,对教材进行适当的加工处理,提高课堂教学效率。
圆柱的体积 11
精心研究教材是用好教材的基础 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的`误区。
学生获得发展是用好教材的标准,有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。
今天教学了圆柱的体积,教学时由于学生手头上早有学具——圆柱体积的演示器,因而学生很容易想到把圆柱转化成长方体的方法,困难之处是学生在语言叙述时有些困难,比如沿着什么剪,平分成无数个什么图形……(在形成方法后,让学生互相说了两遍)。
在实际教学时还是按部就班,先复习了长方体的体积计算方法,再由例4图介入——先出示前面的长方体和正方体,让生知道统一的算法后,再出示圆柱让生猜测之间的联系,继而让学生设法验证——
但是此处教材设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方体计算体积吗?”可是学生早以有了圆柱体的演示学具,显得有些多余(此是教学的一大困惑)。实际教学时还是由圆过渡到圆柱与长方体的联系上来,让学生讨论方法及之间的联系。我又借助了flash课件,辅助认识平均分成更多的份数越来越接近长方体……
有一点,就是学生学具上其中的一块又被平均分成了两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的示意图并没有这样的过程(以前的教材是和学具一样的)。
我认为教材的方法是很可取的,符合极限思想,因为就是不再平均切分一块后移接,如果我们均分的份数无限多时,拼成的图形也一定是一个长方体,何必多此一举呢?
另外,我在网上的教案中看到了这样的一个统一公式:直柱体的体积=底面积×高,觉得有些道理,教学时使用了,让学生分别说出三种立体图形的体积公式后,进行发现,得出此点(顺水推舟),但是接下来还进行了一些提高性的应用练习,出示了三个直柱体(一个是直三棱柱,一个是直六棱柱,一个是底面是梯形的直柱体)告之底面积和高试它们的体积。不知这一教学环节是否可取?
圆柱的体积 12
本节课是在学生已经学习了圆柱的体积计算公式的基础上开展的,大多数学庭作业已经能够熟练运用体积公式计算直观圆柱形容器的容积,这对本节课的后续计算莫定了良好基础。但是对生通过上节课的课堂练习以及家于例7中非直观圆柱形容器的容积计算,很多同学一开始无处着手。通过课件将瓶子正置及倒置的情况分开讨论,然后逐步引导,从而最终使学生明白该瓶子的容积在数值上就相当于两个小圆柱的体积。紧接着,两个及时的模仿练习再次让大家感受到解决此类问题的关键就在于“转换”和“构建”,即:将无法直接计算体积的物体转换成可计算体积的物体的体积;又或者将原不规则的.物体换个角度或方向,从而便于我构建新的可计算体积的物体,进而得出解题思路和问题答案。
对于“转化”这种数学思想的培养,在教学过程中多进行一些引导性提问,给于学生足够的思考讨论时间,尽量让学生自己分析出思路,享受到成功的快乐,从而增强学生的自信心,提高学习兴趣。
圆柱的体积 13
本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的'探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
反思不足: 1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。
圆柱的体积 14
《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的相关知识的基础上教学的。
教学时我注重引导学生经历“类比猜想 验证说明”的探索过程。由于圆柱和长方体都是直柱体,长方体的体积是底面积×高,因而我引导学生猜想圆柱的体积是否也可以用底面积×高来计算。接着引导学生想办法证明自己的猜想,也就是验证说明。重视学生已有的经验,是新课改教学的重要理念,因而我引导学生回忆以前学习的“把未知的问题转化为已知的问题”的方法,即“怎样把圆柱转化成已知的形体”的问题。大部分学生都能想到把“圆柱转化成长方体”,接着就“怎样将圆柱转化成长方体”这个问题,让他们观察、研究、讨论。学生受到以前“圆的面积”推导过程的启发,都知道应把圆柱平均分成若干份切开,拼成近似的长方体。由于学生没有学具,因此我用教具演示整个过程,然后引导学生思考:长方体底面的长相当于圆柱底面的什么?(周长的一半即π r)长方体底面的`宽相当于圆柱底面的什么?(圆的半径r)再根据长方体的面积公式推导出圆柱体积公式V=π r2 × h或V=S×h。这样让学生亲身经历知识的形成过程,为学生的主动探索与发现提供了空间。
我觉得本课比较成功的一点是学生除了掌握本课的知识点外,还懂得了“类比猜想 验证说明”的数学思想方法,可以说是既授之于“鱼”,又授之于“渔”。
圆柱的体积 15
本节课注重了数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。本节课沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的'空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。本课中学生“以旧推新”-大胆地进行数学的猜想;“以新转旧”-积极把新知识转化为已能解决的旧问题;“新旧交融”-合理地把新知识纳入到原有的认识结构中,教学活动成了学生自己建构数学知识的活动。
整个教学过程是在“猜想-验证”的过程中进行的,是让学生在和已有知识经验中体验和理解数学,学生学会了思考、学会了解决问题的策略,学出了自信。
【圆柱的体积 】相关文章:
《圆柱的体积》 07-30
圆柱的体积 06-13
《圆柱的体积》 [热]07-06
圆柱的体积 (优)07-09
[优选]《圆柱的体积》 07-08
《圆柱的体积》 (精华)07-05
圆柱的体积 范文10-25
[实用]圆柱的体积 05-16
圆柱的体积 (精选15篇)03-08