二次函数的 锦集[15篇]
作为一位刚到岗的教师,我们的任务之一就是课堂教学,教学的心得体会可以总结在 中,那么问题来了, 应该怎么写?以下是小编帮大家整理的二次函数的 ,欢迎大家分享。
二次函数的 1
一、教学目标:
1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3。能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1。体会方程与函数之间的联系。
2。能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1。探索方程与函数之间关系的过程。
2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。
2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。
师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知
问题
1。课本P16 问题。
2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
(结合预习题1,完成课本P16 观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图象和x轴交点
一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判别式=b2—4ac
两个交点
两个相异的实数根
b2—4ac 0
一个交点
两个相等的实数根
b2—4ac = 0
没有交点
没有实数根
b2—4ac 0
教师重点关注:
1。学生能否把实际问题准确地转化为数学问题;
2。学生在思考问题时能否注重数形结合思想的应用;
3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习 巩固提高
问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知
问题:(1) P97。习题 1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5] 自主小结,深化提高:
1。通过这节课的学习,你获得了哪些数学知识和方法?
2。这节课你参与了哪些数学活动?谈谈你获得知识的'方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1。题促使学生反思在知识和技能方面的收获;
2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6] 分层作业,发展个性:
1。(必做题)阅读教材并完成P97 习题21。2: 3、4。
2。(备选题)P97 习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
七、 :
1。注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2。关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。
3。强化行为反思
反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4。优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
二次函数的 2
今天讲授二次函数y=ax2+bx+c的图像与性质,首先提供了一系列的情境,使学生体会建立二次函数的重要性,然后以例题的形式通过配方研究具体的一个二次函数y=ax2+bx+c的对称轴和顶点坐标,从而得出它的性质和图象,并进行针对性练习。再由特殊到一般,以例题的形式通过配方推导出二次函数y=ax2+bx+c的对称轴和顶点坐标的公式,再进行针对性练习.
在完成上述的教学内容后,结合本班级的.学生实际,我感觉对学生的学习不能只停留在给定一个二次函数如何用配方法或者是用公式去求这个函数的顶点坐标和对称轴。应该可以对学生提出更高的要求,于是我通过设置游戏进行拔高练习,最后通过设置几个小问题,对整堂课进行总结。
一一审视这堂课的教学全过程,我带着遗憾带着疲惫,当然更多的是沉甸甸的收获。教学有法,但无定法,贵在得法。教学的最终目的是为了实现教学目标,在所有教学内容的确定,教学情景的创设及课堂教学结构的安排,通过上课我认为还需更加注重实效,注重我们学生的实际情况,更重要的是注重学生个体差异方面做得还很不够。比如在游戏环节中,抢答的总是好学生,作为差生,可能连思考的机会都失去了。
教学应该是一个连续的,环环相扣的动态过程,在这节课中,我个人认为在这个内容的连接上,还不够自然。
新课标指出,数学应源于生活并用于生活,但在这方面我觉得在这堂课中体现得还不够,也许是受到这个教学内容的束缚,因为这是二次函数图象与性质是二次函数的起步阶段,所以很难与生活实际联系。但这也是一个很大的遗憾,还有就是在教学基本功上,我也存在很大不足,特别是在板书方面,不够工整,这些都需在以后的教学中,不断改进的。
记得有人说过:“教学永远是一门遗憾的艺术。”而教学艺术水平是在不断解决不足和遗憾的过程中得到提升,我相信只有我们的真挚追求,不懈努力,教学业务水平一定会不断提高。
二次函数的 3
教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。分三步来展开这部分的内容。第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系。第三步,在函数模型的.应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系。
除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型。教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体。教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。
二次函数的 4
二次函数是中学数学的重要内容,也是中考的热点,二次函数应用 。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实践探索课的期待。
二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合教材教学内容,呈现习题27.2第5题,让学生分小组去试验探索解决问题。各小组很快就得出三个特殊点的坐标(0,0)(5,4)(10,0),并求出了抛物线的解析式,当然速度有快有慢,第二问,就是求当x=6时y的值,不少学生纷纷举手示意完成,我很高兴,也没细究每个同学的情况。继续按照预定方案,组织学生活动,开始对一道试题进行探究。
如图,有一个横截面为抛物线的桥洞,桥洞地面宽为8米,桥洞最高处距地面6米。现有一辆卡车,装载集装箱,箱宽3米,车与箱共高4.5米,请您计算一下,车辆能否通过桥洞。
对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手, 《二次函数应用 》。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“小诸葛”之称的.张文贺,你是怎样思考的?张文贺说,他也知道首先建立平面直角坐标系,但问题是不知道把坐标系原点建在哪里,更不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。
本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力又费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。
二次函数的 5
本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2;y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k(h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究的。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。
通过本节课教学,得出几点体会:
1.在教学中二次函数的图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。
2.在探究中要注重类比数学思想的渗透。学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。
3.特别注重数形结合数学思想的渗透。
在学习一次函数的时候,涉及到函数增减性的问题,当时的解决方法是让学生动手去做,方法如下:首先做出一次函数的草图,然后用左手从图像的左到右移动,并且要求学生说出随着x的增大(手由左向右的移动过程中x是一直在增大的),图像是升高了还是降低了。最后把话说完整,随着x的`增大y是增大了还是减小了,这种方法在当时大部分学生还是能够接受的。所以在二次函数的性质这节课之前我就决定了,还是用动手比划的方法让学生去理解增减性。
首先,让学生理解想求出二次函数的增减性首先要从二次函数的一般式转化为顶点式,目的在于通过顶点式就可以直接看出对称轴,再给学生充分的时间让学生发现,二次函数与一次函数的增减性是不同的,一次函数不用分段去说,而二次函数要求以对称轴为分界点分段去说。在这些都准备好之后,告诉学生判断增减性的要点:
(1)通过函数的顶点和开口方向,画出二次函数的草图。
(2)在草图上标出对称轴,然后用对称轴把二次函数的定义域分成两部分。
(3)确定其中的一部分,用左手在草图上从左到右移动,并仔细观察图像是升高了还是降低了,然后再判断随着x的增大y是增大了还是减小了,从而确定是增函数还是减函数。
在用了这样的方法之后,自我感觉学生在理解方面的难度不大,学生的习题完成情况也较好,但是还有一些自己没有预料的问题,比如说学生把一般式转化为顶点式有问题,在说范围的时候,学生不注意对称轴是什么,而都说成了x>0、x<0等,在后续的学习中针对于这些点我还会继续强调。
二次函数的图像和性质 5篇 4.要使课堂真正成为学生展示自我的舞台。还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。
二次函数的 6
这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
整个教学过程主要分为三部分:
第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。
第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a>0时函数y=ax2的性质。探究活动二是独立画出函数y=ax2的图象,然后是自主探讨当a<0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数 y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的'答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
本课的优点主要包括:
1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。
本课的不足之处表现在:
1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。
2、作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历“错误”的过程,这样他们才会懂。正所谓“我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解
3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。
4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a>0的情况下能得到a越大开口越小,a<0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
二次函数的 7
二次函数是数与代数中的重点,图形变换是空间与几何中的重要内容,当二者结合在一起时学生不易理解,所以设计了本节课的内容。
优点:
1、课件制作有演示图形的变换与呈现的结果,帮助学生更好地理解图形变换的规律和特点,认识问题的本质,突破难点。
2、练习题的选择以模考、练考、往届中考及中考说明为主,强调了所学知识如何在做题中应用,提高学生的解题能力。
3、在复习过程中强调了数学思想方法的应用,如整体代入的思想,数形结合的思想,逆向思维的方式等,提升了学生的数学思维, 《二次函数与图形变换 》。
4、以表格的形式对本节课的知识进行总结和梳理,使学生对本节课的内容有一个整体的回顾,从认识到数学思考对学习的重要作用。
缺点:
1、上课气氛过于沉闷,由于选择的题型较有难度,使不少学生独立思考问题时缺少解题的`方法和技巧,耽误了一些时间。
2、学生对于本节课的内容没有充足的时间进行反思和总结,很多规律由老师代替总结。
3、由于时间关系,所涉及的内容较多所以留给学生思考和进行展示的机会太少。
4、讲课的内容可能没有照顾到全体学生,有少部分学生对本节课的知识掌握的不好。
努力的方向:
1、进一步研究考试说明,使初三总复习能够更有效进行。
2、认真钻研各种题型,引导学生总结解题方法以及所运用的数学思想。
3、备好学生,使课堂气氛更活跃一些。
专家点评:
1、用图像研究函数应指明关键地方。
2、图形变换与a、b、c、h、k、x1、x2相关,每种变换与常数有什么关系应明确指出。
平移————a、b、c
旋转————h、k
对称————x1、x2
3、明确函数的解析式应能够画出图像草图进行分析。
4、教案中突现学生为主体。
5、应在平时的讲课过程中培养学生表述问题的能力,引入学生之间的交流、评价,易于提升课堂气氛。
6、课堂练习在巡视的过程中,所发现的问题应及时点评。
二次函数的 8
在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的'学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。
教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
二次函数的 9
教材分析:
本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。
教学片段:
本节课我是这样设计引入的。
[师] y=3x2的图象有何特点?
[生]很快能说出函数图象以及相关的性质。
[师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?
此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。
[师]y=3x2-6x+5的图象与y=3x2有何关系?
[生]猜想:向上平移5个单位,向左右平移6个单位。
[师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)
教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。
此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。
[师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?
[生]可以先研究y=3(x-1)2的图象。
前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。
让学生完成课本P46的表格。
在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。
此处的设计是要让学生学会观察,从表格里发现函数图象的平移。
[师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?
[生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。
[师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。
通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。
教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的`图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。
反思:
函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。
二次函数的 10
根据市骨干教师交流学习的安排,我在九年四班上了《2.1二次函数所描述的关系》这节课。这节课我首先让学生思考了列两个函数关系式的生活实际问题,然后又对函数的定义和分类进行了巩固。接着在学生探究两个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。
课后,组内的老师认真地评析了本节课。结合组内老师的评课,我自己也进行了认真反思。
成功之处:
1、对二次函数的学习,本节课通过丰富的现实背景,通过学生感兴趣的问题,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动(经历数学化的过程),通过学生之间的合作与交流,通过分析实际问题,如探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系、
2、设计大量的可以表示为二次函数、利用所学的二次函数知识可以解决的实际问题,发展学生的数学应用能力;利用“想一想”,提出进一步的最大产量的问题;用统计的方法得到关于最大产量的一种猜想,问题的最后让学生初步感受二次函数能解决最优化的实际问题。在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数;在以上两例的基础上,给出二次函数的定义,并举出以前所见到的一些二次函数关系式,为新知的理解做好了铺垫。
3、在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。
4、本节课我注重训练学生书写的规范性,让学生养成良好的答题规范习惯。
不足之处:
1、在分组教学时,对用统计的'方法得到关于最大产量的一种猜想,课堂上有一部分学生没有充分参加计算,此处给学生的时间少一些。
2、在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数的过程中,没有让学生有更多的交流和互相评价,有些学生对列函数关系式不是完全理解;
总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数的 11
这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。通过学生的`探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系。在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数的 12
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的.根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。《人教版九年级数学下册。
二次函数的 13
因为对称轴是x=2,所以-b/2a=2
所以得a+b+c=0c=3
-b/2a=2
解得a=1b=-4c=3
所以所求解析式为y=-4x+3师:两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下.(同学们开始讨论,思考)
生B:我认为此题可用顶点式,即设二次函数解析式为
y=a(x-2)2+k,把(1,0),(0,3)代入,得
a+k=04a+k=3
解得a=1k=-1
故所求二次函数的解析式为y=(x-2)2-1,
即y=x2-4x+3
师:非常好.那还有没有其他方法,请大家再思考一下.(学生沉默一会儿,有人举手发言)
生C:因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以,求解析式为y=-4x+3
师:设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考.大家再想想看,是否还有其他解题途径.
(学生们又挖空心思地思考起来,终于有一学生打破沉寂)
生D:由于图象过点(1,0),对称轴是直线x=2,故得与x轴的另一交点为(3,0),所以可用两根式设二次函数解析式为y=a(x-1)(x-3),再把(0,3)代入,得a=1,
所以二次函数解析式为y=(x-1)(x-3),即y=x2-4x+3
师:函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到.(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)
师:最后,请同学们想一下,通过本堂课的.学习,你获得了什么?
生1:我知道了求二次函数解析式方法有:一般式,顶点式,两根式.
生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法.
二、回顾与反思
二次函数的 14
这节课在学习了二次函数的基本形式和二次函数的图象、顶点坐标、对称轴等性质的基础上来学习用二次函数解决实际问题。学生对前面所学的知识已经掌握,但综合应用能力较差。因此在教学设计时将本节知识分两课时进行,这节是第一课时,从课堂上学生的反应和课堂练习可知本节课教学效果较好,大部分学生能准确分析题意并能写出函数关系式,培养了学生理论联系实际的能力和分析问题的能力;但在确定自变量的取值范围和函数的最值时只有少数学习较好的学生能准确解答,这说明稍复杂的数量关系分析是学生的难点,单一的知识应用能准确找到解决途径,而综合起来应用学生就有些茫然,无法确定切入点。
本节课在两个地方学生出现疑难:一是分析题意时理不清价格和数量之间的对应关系;二是不能准确判断自变量的'取值范围和函数的最值。对于这些难点我是这样处理的:
首先在回顾了前面的知识点后提出实际问题:某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?在分析题意时学生能分清涨价、降价所对应的商品销量,但一小部分学生依教材上的解题思路不能理解售价和销量之间的对应关系。对于这个难点我是这样处理的:设每涨x个1元,则每件售价为(60+x)元,少卖出10x件,共卖出(300—10x)件;每降价x个1元,则每件售价为(60-x)元,多卖出20x件,共卖出(300+x)件。重点强调“x个”!虽然在分析中只多了个“每(涨或降)…个1元”,但就这几个字却能帮一部分学生理清关系和思路,如涨3元8元的问题,则售价为(60+3x)元或(60+8x)元,这样学生从最小单元开始分析,逐层递进,很容易理清思路找准关系。这个关系弄清了,函数关系自然水到渠成就写出来了。
其次是由函数解析式确定最大值,而确定最值时必须考虑实际问题中自变量的取值范围。在这个问题中x首先是非负数,同时(300—10x)也是非负数,所以x大于等于0且小于等于30。结合函数解析式y=-10x2+100x+6000可知该函数图象开口向下,有最大值。由顶点坐标公式可以计算出当x=5时(在自变量的取值范围内),y有最大值,且此时y=6250。强调此时不仅要考虑顶点坐标公式,还要结合题意看这个x值是否在其取值范围内。x值确定后将其代入就可求出最值y的大小。
从学生课堂练习来看,大部分学生会用这个分析方法解决相应问题。虽然这节课没能按课时安排学习探究二的问题,但学生能掌握商品涨(降)价与售价、利润间这类问题的分析并会列函数关系也算是一点点收获了。
二次函数的 15
我们已经学习过了正、反比例、一次函数的性质和图像,并且学习过了一元二次方程之后,现在要学习二次函数的图像和性质,从课本和教学大纲的体系来看,二次函数是初中数学的重中重,怎样让学生们学好二次函数?掌握好二次函数的图像和性质?让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
为此我们三年级数学组把李进有李校长请到数学组里,李校长说要想教好二次函数开始时一定要让学生们动手画图,画不同情况的图形,通过画图让学生观察、理解、掌握所学的.内容,并能总结出各个图像的相同点和不同点,通过李校长指点,我们在学习y=a(x—h)2的图像和性质时,首先让同学们开始画y=x2 、y=(x—2)2 、和y=(x+2)2 。通过对比,观察发现它们之间是通过y=x2向左或向右平移得到y=(x—2)2 、和y=(x+2)2,但是好多同学对着图形还是不理解加2为什么向左平移??这时我想到李校长说的不要害怕费时间,一定要让同学画图,我又让同学画一组,终于同学们在学习二次函数y=a(x—h)2的图象和二次函数y=ax2的图象的关系时,解决了向左或向右平移引出了加减问题,解决了学生在此容易混淆的难点,让学生结合图象十分明确地看到在x后面如果是加上h就是向左平移h个单位,反之就是向右平移h个单位,其次就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。
通过本节课的讲解我感到要想教好数学,一定要让同学动起了,既能引起学生兴趣,又能对前面所学的二次函数的知识加深印象,适应学生的最近发展区,今后要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。
【二次函数的 】相关文章:
二次函数的 05-21
初三二次函数 04-22
二次函数复习课 09-24
《二次函数复习课》 11-05
函数的概念 03-14
二次函数说课稿07-25
《函数的图象》 04-25
反比例函数 05-15
正比例函数 04-22
对数与对数函数 04-21