首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >《分数除以整数》的

《分数除以整数》的

时间:2024-05-21 13:16:49 我要投稿

【优选】《分数除以整数》的

  作为一名到岗不久的老师,我们要有很强的课堂教学能力,在写 的时候可以反思自己的教学失误, 要怎么写呢?以下是小编为大家收集的《分数除以整数》的 ,仅供参考,大家一起来看看吧。

【优选】《分数除以整数》的

《分数除以整数》的 1

  《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的学习基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学生都有了足够的'掌握,有了上面的基础保障,我觉得把研究新知识的权力交给学生是完全可以的。

  整节课通过学生自己动手设计板书,上台展示,自我总结,发现方法,其中必要的操作是比不可少的。本节课中理解分数除以整数的计算方法的算理是这节课的重点和难点,学生经过动手操作,将实验中的图与式子对应起来,通过图形,学生直观感知了“4/5÷2”可以表示为“4/5里有4个1/5,把4个1/5平均分成2份,每份就是2/5,从而理解计算方法。同时也直观感知了”4/5÷2就是把4/5平均分成2份,每份是多少,可以理解为求4/5的1/2是多少,即4/5×1/2,真正理解“分数除以整数(0除外)等于分数乘这个整数的倒数“的计算方法。由于理解算理,学生能正确地掌握计算法则,课堂上表现在学生顺利完成4/5÷3的计算。

  整节课,孩子们情绪比较激动,课堂纪律不太好,讲解的过程缺乏详细,只会照板书读下来,对于质疑环节,孩子们不太会提问,这在以后的课堂中要加以锻炼。

《分数除以整数》的 2

  《小学数学课程标准》中明确地指出,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这节课中“动手操作”是学生在理解算理的思维过程中建立表象的必要手段。通过学生分一分、画一画,理解4/5和1/2的意义,同时感受到了结果2/5是怎样来的过程。学生在这一过程中,建立了2/5的表象,既可以表示4个1/5平均分成2份,也可表示求4/5的1/2是多少。通过这一过程,学生已经为后面算理的概括,提供了第一手、不可缺少的感性材料。

  然后再出现“如果4/5 升果汁平均分给3个小朋友喝,每人喝多少升?”,让学生用上述方法来解决这一问题4/5÷3。引发认知冲突,从而得出第二种方法,也就是“分数除以整数(0除外),就是分数乘以这个数的倒数”。

  让学生真正地从分数意义和分数乘法的意义上去理解分数除以整数的'计算算理。其实也在渗透着一种“转化”的数学思想,让学生感受到在解决问题时,我们可以把一些新的问题转化成已有的方法来进行解决。而方法上的比较只是为了在方法上的取舍。

  通过一节课的教学,课堂作业的反馈,本人发现,学生在做题目时会出现这样的错误,

  一、除号变成乘号,但除数没有变成它的倒数。

  二、分子和整数直接约分,计算。

  三、把被除数和除数都变成了它的倒数,然后约分计算。

  要针对以上错误情况,教给学生正确的计算方法。

《分数除以整数》的 3

  本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数平均分成几份,就是求这个数的几分之一是多少”。

  首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;

  然后,设置问题情境,让学生先猜测分数除以整数的'计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数平均分成几份,就是求这个数的几分之一是多少”,的意义。

  练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。

《分数除以整数》的 4

  分数除以整数 :一文支持一种观点:没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。

  数学课上老师“把所有的问题都自己扛”,而学生依旧是“剪不清,理还乱”,作为教师我们是否应尝试另一种途径:鼓励学生大胆动手尝试,引导学生自己寻求解决问题的方法。

  小学数学第十一册中有这样一课《分数除以整数》,在分数除以整数的法则推导过程中,教科书以线段图帮助学生理解。也许是线段图总是与数学联系在一起,所以学生对它没有太大兴趣。在教学中,我插入了一个操作题,让学生在动手操作中,去自己发现总结法则,尝试着象数学家一样去不断发现探索,结合计算机课件的使用,学生的学习兴趣立刻得到提高。

  准备三张同样大小的长方形纸,把这三张纸都平均分成3份,其中两份涂上阴影,

  (1)把第一张纸的2/3,平均分成二份,怎样折,每份是原来这张纸的多少?你能列出算式,并根据折纸求出答案吗?

  (2)用折纸的方法求出2/3divide;4、2/3divide;6的答案。

  (3)在折纸操作中,你发现除法算式的结果是怎样得到的?

  在同学们自己动手操作、小组合议的基础上,得出了分数除以整数的计算法则。这个法则不是教师讲解的,不是书本提示的,而是同学们在自己的动手操作中,借用已有经验自己发现,总结出来的。看来每位学生都有成为数学家的天份,就看教师能否带动学生,让学生自己去体验数学符号的内涵。

  同样也是“做数学”,我校张秋菊老师的一节“角的度量”课,更让我体会到“做”的重要。她改变了原有的教材呈现方式,在“做”数学中体验知识的产生与发展。

  本节课原教材是先让学生认识量角器,告诉学生什么是角,再教给学生如何测量角度的大小,最后告诉学生角的大小与边的长短无关。旧教材老师教知识,教方法,学生被动接受,张教师转变了教材的呈现,让学生在“做”中体验学习的方法,知识的生成。

  张老师在教学从“用扇子折角”开始,带给学生一个有趣的、需要思考的问题情境,使学生在自然的情境中生成学习的兴趣与动机,教学中的这种现实情境是学生在自己的生活中能见到的,听到的,感受到的,也可以是他们在数学或其他学科学习过程中能够思考或操作的,属于思维上的现实。

  面对着情境中已生成的数学问题,老师并不忙于告诉学生答案,而是让学生在一次次折角中知道90deg;45deg;30deg;15deg;角。再试着折一个角,学生在求解遇到了困难,此时用电教媒体来解决角的问题。在这个过程中学生经历了求解的过程,给学生思维的空间,在老师的帮助下自己动手动脑“做”数学,用观察、模仿、实验、猜想等手段获得体验,从而学会运用数学解决生活中的问题。

  这两节课都体现了以下的特点:

  ⑴强调动手实践活动,从周围生活选取活动材料。

  ⑵在强调知识学习的同时,更强调对学习方法、思维方法、学习态度的培养。

  ⑶提倡合作学习。

  在美国国家委员会的《人人关心:数学教育的未来》的报告中有这样一句话“实在来说,没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”学生不仅要用自己的脑子去思考,而且要用自己的.眼睛去看,用自己的耳朵去听,用自己的嘴去说,用自己的手去操作,在用自己的身体去亲自经历,同时,用自己的心灵去亲自感悟。在操作、实践、考察、探究、经历过程中,去自己发掘新的知识,新的规律,也许这些发现是幼稚的,但这必竟是孩子们自己的一次尝试性的探索,无数次的这种探索才能使学生渐渐的体会出数学奇怪符号所代表的意义与哲理。这正是《新课标》中提倡的“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。这种“做数学”的方法,把以定型化、定量化写在书中的无味数学知识,还以丰富的思维过程,将数学课本激活,使之恢复活性和灵性。把古板的定义变得脉脉含情,把艰深的算理变得平易近人,把枯燥的计算变得丰富多彩。通过学生自己的努力,实现了数学思维的再现,弥补了课本的不足,还学生以生动、精彩、充实的数学。

《分数除以整数》的 5

  一、备课也要备学生。通过这节课的教学,对这句话我有了更深切的感悟。例1中4/5升果汁,教材里已经呈现了4/5升果汁,让学生在图中分一分。而在黑板上呈现的时候,我只呈现了一个长方形,平均分成了5份,然后问学生怎样在图上标注4/5升。我以为这是一个很容易解决的问题。没想到板演的学生标的'却是图1。我从生活入手,引导学生正确标注图2(瓶子正放,少的应是上部)。

  在把4/5升平均分成2份,分一分的时候,又出现了新状况。板演的学生又分出了图3。从图形上来说,学生的分法是合理的,但从生活的角度来说,应按图4(即上、下分)比较合理。随后用量杯演示了这个过程。

  二、备课的过程也是师生一路行进,一起并肩看风景的过程,有曲折,有峰回路转,有迷惘,有欢愉……当下课铃响的时候,我还是不顾一切的拖了堂,将教材里4/5÷3=4÷3/5无法计算的局限性打破了,引导学生用分数的基本性质将“此路打通”了(4/5÷3=4×3÷3/5×3=4/15)。这种算法学生在以后的计算里也许大会去用,但是拓宽了学生的视野,可以换个思路解决问题。

  有遗憾,有收获,有感悟,有成长,这节课带给我的远不止这些。“凡事预则立,不预则废”。陆游说过:“工夫在诗外。”同样,教师“上课在课外”。反思、总结、提升、创新……

《分数除以整数》的 6

  《分除以整数》,这课时其实上的相当失败。这一节课最主要就是要学生经历总结规律和探索分数除以整数的计算方法的过程,掌握分数除以整数的计算方法,能运用分数除以整数的计算方法解决简单的实际问题。教学重点是理解分数除以整数的含义,难点是掌握分数除以整数的计算方法。

  在教学过程部分,我设计了两个复习导入,分数乘法,说出各数的倒数。这一部分存在的'问题时,分数乘法的练习量有点过大,在说出各数的倒数,我重点放在如何将带分数转化为假分数。在教科书上出示的例题中,通过把4/5张纸平均分成两份,求其中的一份是几分之几?我给学生准备好了一张长方形的纸条,我已经把这张纸平均分成了5份。学生很容易就能表示出4/5,也列出算式,4/5除以2。

  但是在折纸部分,存在两个问题,同桌小组合作折纸,有点流于形式,同桌之间交流较少。折纸结束后,我给学生留的说一说的时间比较少,我应该让学生多说一说,你是怎样折纸的?通过折纸过程,如何写计算过程?我引导的太多,导致,学生学习比较被动的接受知识。在引导学生理解4/5除以2,就是把4/5平均分成2份,取其中的一份,就是相当于4/5的1/2.在这一部分,我认为应该在导入部分,增添,说一说5/6乘以6/1的意义。这样学生再通过折纸就可以容易理解分数除以整数计算方法的算理。这也是设计中最失败的部分,没有考虑到学生对前面学习的分数乘法意义,其实有一些淡忘了。通过三次折纸,观察两个算式,总结计算方法。其实在归纳总结这一部分,我发现其实只有少部分学生,才能发现一些规律和计算方法的。我对于这一部分,通常是在少部分学生发现规律之后,先让学生齐读,再找出关键信息去理解规律,再通过举列子巩固找到的规律或者计算方法。这一课时时间也没有把握好,导致后面巩固练习的时间不够。

  总的来说,这是一节失败的课,言简意赅的说自己的问题是,引导太多,没有体现学生的主体性,在预设中,应该更多考虑学生已有的知识经验,有时候还是要多相信学生,多给学生思考多给学生交流的时间。后续我会在练习讲解的时候,再发现学生存在一些什么问题。

《分数除以整数》的 7

  本节课基本上完成了教学目标。体现在:在课堂中,学生从始至终都能以积极的态度和饱满热情投入每一个学习活动中。整节课都发挥了学生的主观能动性,在主动探究除以2的分数除以整数的过程中,学生想出了各种各样的方法,同时也独立思考的基础上通过小组交流,师生探讨以及在画图的帮助下,成功地小结出分数除以整数的一般性计算法则。

  反思整个教学过程,我认为成功的关键在于学生是通过自主探究获得知识的,具体分析如下:

  ⒈学生研究知识方法的产生过程比教师研究如何教更重要。

  学生对于新的知识一方面有新鲜与好奇,另一方面对又有着相关的旧知识。因此在教学过程中教师要充分尊重学生已有知识和学习经验,让学生在宽松的氛围中,唤起已有的相关知识。学生能运用旧知识来解决今天所学的分数除以整数,甚至于日后学习的分数除法相关的所有知识。有相关的旧知识做为基础,把分数除以整数的学习研究完全可以让学生自主来研究。体现成功学习的乐趣。

  ⒉解题方法来自于学生。

  对于新的知识的学习,不是教师去讲解,而是能过让学生在独立思考的基础进行看书自学的基础上进行小组交流,师生探讨等让学生主动寻求解决问题的.方法。在充足的时间里学生进行充分有效地自主学习活动,发挥学生的主观能动性。从而激发出学生各种各样的解决问题的方法。通过学生的思考,交流,体验,让学生对除以2的研究到位,想出了画图的方法,乘法的方法。计算方法的多样性,学生在除不尽的计算中让学生感受倒数乘法计算方法的优越性。从整个过程来看,学生完全有能力研究新的知识,同时在解决问题的过程学会倾听,学会与人交流,体验数学本身的魅力,感受学习成功的喜悦感。让学生从心里爱上数学。

  ⒊存在的问题:

  探究的主体是学生,但对于差生如何参与到探究的过程中,是我仍需要思考的问题。在计算过程中学生对于思考的过程体验得多,对计算的方法有待加强,学生出现除法算式中除数的倒数是写了,但没把除号改过来。对于有些差生把被除数也改写成倒数。怎样引导学生观察45 ÷2和45 ×12 相等,引出转化的思想。

  教学总是一门遗憾的艺术,在不断的反思中会使教学更进一步。

《分数除以整数》的 8

  出示这样一组信息:

  出示:一只小鸟小时飞行12千米。1小时行多少千米?

  你会用线段图表示条件吗? (师生一起画出线段图)

  求小鸟1小时飞行多少千米,算式怎么列?

  这是整数除以分数(板书课题)

  1、12÷怎样计算呢?

  学生可能有以下三种方法:

  (1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)

  你还能否根据线段图发现不同的解法呢?

  (2) 12×5 (这是根据线段图理解的。)

  为什么乘5?能在图中解释一下吗?

  (3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)

  (4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)

  师:从计算上面来看似乎第二种算法最简单!

  这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)

  师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。

   :

  课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的`例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。

《分数除以整数》的 9

  这是一节普通的计算课,为的是以平常的教学内容为载体,研究怎样体现“三维”目标。

  1、知识与技能目标。

  我认为,一节课,无论它采用何种教学模式,华丽也好,朴实也好,最基本的知识和学习的技能必须得传授下去。这节课重点是要求学生理解分数除法的意义和掌握分数除以整数的计算方法,课内和课后的学生反馈可见,这一目标得以实现。

  2、过程与方法目标。

  知识与技能通过什么途径让学生获得?就是过程与方法的实施。这需要老师提供机会,引导学生深度参与数学活动。我把例题的数据 改成 ,目的是提供更多的切入点,让不同层次的学生都有从旧知迁移、转化到新知的.可能性。鼓励解决问题策略的多样化,体验最优化。这节课学生在一系巩固练习中充分体会到分数除以整数的最优计算方法是转化成乘这个分数的倒数。

  3、情感、态度与价值观。

  这一目标并不是单独存在,它其实渗透在每一个教学环节中,更不能简单地以为它代表着德育教育。本节课,学生有困惑、有惊喜、有自豪、他们有充分从事数学活动的机会, 能够自由地表达自己的想法,分享他人的喜悦,这才是数学课的魅力所在。

《分数除以整数》的 10

  本节课的教学活动充分体现了《数学课程标准》提倡的基本理念。在知识的探究过程中,教师引导学生经历了“猜想---验证---比较---抽象---概括”的过程,

  课堂教学活动以学生为主体,师生共同参与,协调互动,形成了民主、融洽、开放的课堂氛围。

  1、本节课能够从学生的生活实际出发,使数学知识与学生生活实际有机地联系起来,使学生的感觉到数学就在身边,感到了数学的亲切,从而有效地激发了学生的学习兴趣。

  2、课堂的学习活动主要以学生的独立思考与小组合作学习为主。让学生在原有经验与知识的基础上进行自主、合作的探究学习,从而保证了学生充足的动脑思考的时间和空间,这样不仅有利于学生对知识的.知其然而知其所以然,更有利于学生思维能力的训练和培养、有利于学生合作学习意识和能力的形成。

  3、解决问题策略上鼓励求异思维,激发创新潜能。在探究整数除以分数计算方法的过程中,教师鼓励各小组的学生探讨用不同的方法求汽车1小时行驶的路程,结果学生在讨论的过程中,相互启发思路被打开,于是想出了许多种的解决方法,实在让我感到欣喜。这样既激发了学生学习的兴趣,又培养了学生的求异性思维能力。

  4、能在正确理解《数学课程标准》基础上,结合教学内容有效地让学生实施“猜想---验证”,从而让学生又一次认识到数学知识的严密性,培养学生利用原有经验和知识进行合理猜想的意识和能力。

  5、重视练习设计,巩固新知,解决问题。本课的练习设计有层次、有坡度,形式多样,学生练习有兴趣,练习效果好。

《分数除以整数》的 11

  反思整个教学过程,学生是通过自主探究获得新知识的。

  1、学习内容来自于生活。

  内容选择一根绳子,让学生主动地进行观察、猜测和思考,看的出来,学生对绳子的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根绳子的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计“÷2”的结果,充分体现了“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。

  2、解题方法来自于学生。

  面对新知识的学习,让学生自主探求解决问题的方法。将更多的时间、空间留给学生,这为学生提供了充分的学习空间,学生的思维是发散的,学生的`方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不唯一。说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这一过程恰恰体现了学生们具有学习的主动性和主体意识。

  3、让学生充分评价和反思。

  对÷2的探讨出现了多种不同的思维方式时,引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。

《分数除以整数》的 12

  教学片段:

  师:把4/5米平均分成两份,每份是多少米?

  生:4/52=2/5(米)

  师:你们认为他做得对吗?

  生:对

  师:谁能说说你是怎样想的?又是怎样计算的?

  生1:我是由分数乘法的法则类推出来的,我想2也就是2/1,我用分子除以分子的商作分子,分母除以分母的商作分母,所以4/52=2/5。

  师:有不同的想法吗?

  生2:我是这样想的,4/5米是4个1/5米,把4个1/5米平均分成2份,每份是两个1/5米,也就是2/5米,所以4/52=2/5(米)。

  生3:4/5除以2就是把4/5米平均分成2份,求1份是多少,1份也就占总数的1/2,根据求一个数的几分之几是多少,用乘法计算,所以我能转化为分数乘法,4/52=4/51/2=2/5(米)。

  师:你们对这三种方法都认可吗?

  生:(一致点头)认可。

  师:(点头微笑)你们觉得哪种方法更好?

  生4:第一种方法不好,如果是4/53就不能除了。

  师:看来第一种方法不具有普遍使用性,是吗?

  生5:第二种方法也不能计算4/53类似的问题。

  (此时教室里变得鸦雀无声,同学们陷入了思维的沉静,沉默片刻之后)

  生6:老师,我有办法使第一、二种方法都具有普遍使用性,我根据分数的基本性质把被除数的分子、分母同时扩大3倍,不改变除数的`大小写成4/53=(123)/15=4/15。

  师:你的想法太有创意了,谢谢你的精彩回答。

  生7:我认为这种方法还是不太好,如果是4/53/7,按这种方法计算就太麻烦了。

  师:大家赞同这点意见吗?

  生:同意。

  师:此时你们想想,用什么样的语言来概括分数除以整数的方法?

  生:

  反思:

  在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不平处奋力向前,一波未平,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。

  此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。

《分数除以整数》的 13

  我在仔细钻研教材的基础上,对教材创设的情景进行了适当的修改,以适应学生的自主探究。

  首先,我用画图示意:把1米长的线段,平均分成了10份,然后取其中的9份,问得到的是多少米?学生回答了9/10米和0.9米2种答案,接着我出示问题:把一条9/10米的线段平均分成3份,每份是多少米?学生开始画图或演算。

  [设计意图:使学生理解分数的意义,理解分数除以整数的意义,并能把分数除法与分数乘法有机地联系起来,最后还想让学生学会转化的数学思想。]

  生1:9/103=93/10=3/10(米)

  生2:9/10=0.9 0.93=0.3(米)

  生3:9/103=9/101/3=3/10(米)

  生4:9/103=9/103/1=3/10(米)

  生5:9/103=27/10 27/109=3/10(米)

  师生共同分析每一种解答方法,师:谁能说明方法一的理由?生1:9/10表示有9段,所以把9除以3,得到每一份是3段,也就是3/10;生2:为什么10不要去除以3呢?生3:因为10表示的是整体;生4:因为10表示的是把整体平均分成了10份,我们在平均分成3份时,整体还是被平均分成10份的,所以分母不变。(同学们在讲解的时候,老师随着画出了示意图。)随着图示的演示,同学们都表示能理解这种方法。师:谁能解释第二种方法?生:因为我们没有学过分数的除法,但我们学过小数的除法,所以我把9/10化为小数,这样我就会做了。师:很棒,你们已经能通过恰当的转化利用我们学会了的内容来解决还不会的内容,这是一种很好的思维方法。师:能解释第三种方法吗?除法怎么会变为乘法的呢?生1:我们在把除法变为乘法的时候,同时把3变为了它的倒数。生2:为什么9/10就不变呢?你的这种变化的理由是什么呢?李响:因为把9/10米平均分成3份,每一份就是三分之一。生还是不很明白,黄钺虎:因为把9/10米平均分成3份,取其中的一份就是9/10的1/3,9/10的1/3是多少,我们可以用乘法计算来解决,9/101/3,除法算式的含义和这个乘法算式的含义是一样的,所以可以这样转换。(在同学讲述的时候,老师在线段图上示意,帮助学生理解。)师:请同学们仔细观察这种转换过程中,哪些是要变的?哪些是不能变的?生:除法变成了乘法,除数变成了它的倒数,而被除数是不能变的,只要照写就可以了。师:谁能解释第四种方法?大家都说是巧合,是凑出来的。我示意同学们让这位同学说说他的想法,这位同学说,他看到平均分成3份就去乘以3,结果发现不对,因为从图上看出结果应该是3/10,后来想到27/10只有除以9才可以等于3/10,所以就除以9了。(学生受到分数乘法的负迁移影响,这种迁移又和图形上的理解发生冲突,如何解决了?学生采用了杜撰的方法。)在老师和同学们的帮助下,这名同学懂得了自己的错误所在。师:第5种方法我们今天不解释,等我们学完了后面的知识再来研究这个方法。

  我还没来得及往下讲,文盛迫不及待地站起来说:老师,我认为第一种方法和第二种方法不是最好的方法,你看7/133,用第一种方法和第二种方法就行不通了。老师和学生一道验证,同学们发现了问题:分子除以3得到了一个无限小数,第一种方法确实行不通;那第二重方法呢?同学们在实际计算中,又发现了7/13也不能化为有限小数,因此大家都同意文盛同学的看法,这个题只有用第三种方法来解决最合适,老师示意同学们用第三种方法来解决这个问题。就在同学们快速完成学习任务的同时,李响同学站起来说:老师,我发现当分数的分子除以分母可以得到一个整数时,第一种方法简单;当分子除以整数得到的结果不是整数时,第三种方法简单。师:你们真的`了不起,不仅学会了方法,还能根据实际情况灵活选用。

   :首先我深入了解了教材的编写意图,特别是从苏教版的教师教学用书上细致地理解了转化和把分数除法和分数乘法联系起来的教学思路,因此,我联想了学生已有的知识基础,对分数的认识和分数乘法意义的理解,由于我在学习分数乘法的教学过程中特别强调了对分数意义的理解和分数乘法运算的理解,因此我认为我的学生完全可以利用已有的知识把分数除法与分数乘法联系起来。同时,我又看到了一篇 上,写到学生把分数转化为小数来解决,我认为也是比较可取的,因为它的出现说明了学生学会了转化的数学思想。想到这里,我决定对教材的情境加以修改,因为教材中出现的6/7是不好转化为小数的,它将限制学生的思维;

  同时,我还看到了一位老师借助分毛线的实物操作来帮助学生理解分数除法的意义,但我认为五年级的学生要实现从形象到抽象的过度了,因此,我想通过线段图又和实物紧密联系的思维模式让学生解决所遇到的问题。这样课一开始,我就出示了线段,并演示得到了9/10米的过程,加强学生对分数意义的理解,唤醒学生在学习分数乘法时储备了的知识,由于我的精心设计学生能凭借自己的努力,在解决问题的过程中,不断产生新问题,通过思维的交流和碰撞,学生深层次地理解了每一种计算方法和其中隐含的数学思想,而思维活跃的学生更是对方法的优劣进行评价,用实例说明优与劣的原因所在,让大家心服口服,还有的则能根据不同的情况来区别对待。我觉得他们是了不起的。就算是学困生也都借助图形语言理解了问题的答案,尽管他们的方法不是正确的,但他们有他们的思维过程,他们找到了自己出错的原因,所以我感觉这样的课堂大家都在努力,大家都在收获。而我所做的就是对问题的设计和对细节的引发思考。当然,我也遇到了一定的问题,如:是不是每个问题都给所有的学生留下了思维的时间和空间,肯怕是没有实现的;还有,学生出现的第5种方法,我没有及时给学生明确的答复,他们会有什么想法,他们会不会不理解甚至还会在练习中采用呢?这个问题又该如何处理呢?

《分数除以整数》的 14

  这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。

  一种竖着折,即平均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的.引导让学生理解了为什么可以乘以除数的倒数。

  在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。

  虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。

《分数除以整数》的 15

  本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量关系列出求吃每人吃1/2 个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数除以几分之一就等于这个数乘以几分之一的'倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。 学生学习整数除以分数后,部分中下生出现了这样的问题:

  (1)把被除数的整数写成的倒数;

  (2)把被除数的整数和除数的分数都写成了倒数。严重受到负迁移影响。在教学中如何克服呢?首先要让学生明确算理:整数除以分数,等于整数乘以这个分数的倒数,实质上是被除数除以除数等于被除数乘以除数的倒数。其次,要加强比较训练:整数除以分数、分数除以整数的题目进行分组练习,以强化加深理解整数除以分数的算理。

【《分数除以整数》的 】相关文章:

《分数除以整数》的 04-04

《分数除以整数》的 (必备)05-21

《分数乘整数》 04-23

分数乘整数 12-20

小数除以整数教案优质01-24

《小数乘整数》 05-15

小数乘整数 06-16

《小数乘整数》 10-25

《分数乘分数》 02-20

一个数除以分数教学设计05-10

Baidu
map