《梯形面积》
身为一名到岗不久的老师,我们要有一流的课堂教学能力,通过 能很快的发现自己的讲课缺点,如何把 做到重点突出呢?下面是小编为大家整理的《梯形面积》 ,欢迎大家分享。
《梯形面积》 1
今天这节课是在学习了平行四边形和三角形面积的基础上进行教学的,课前让学生回顾了这两天学习这些图形的面积的计算的方法,了解是用了“转化”的思想得到的。重难点都在梯形面积的公式推导过程上。本节课为了让学生能够顺利的解决问题,在开始的时候先让学生回顾了梯形的各部分名称以及他们的特征。并且让学生再一次学习了画梯形的高,目的是想让学生在后面推导公式的过程中无阻碍。
首先,我提问学生,如果今天我们要来研究梯形的面积,你有没有什么好方法?动手画一画,把你的想法说给你的同桌听一听:此时学生开始畅所欲言,好多学生都想到了要把梯形分成一个平行四边形和一个三角形,然后把这两个图形的面积相加就得到了梯形的面积,此时如果我能赶紧及时的给学生一个高度评价的`话,孩子们会真的感受到自己的成功,如果我能看到此时会思考的孩子们的美,才是这节课最大的收获不是吗?而我却没有那样做,还是因为担心教学进度的问题,只是稍作提示后就给赶紧追问,还有没有别的方法。
之后,在学生一筹莫展的时候,我提示道:“想一想我们在探索三角形的面积的时候是怎么做的,有没有什么可以借鉴的地方?”聪明的学生立刻想到了要再拿一个完全一样的梯形,然后把他两拼起来就是一个大大的平行四边形,这样我们就把这个梯形的面积转化成了先求平行四边形的面积。由于引导到位,学生很快能将梯形的面积抽象出来,回答老师的问题也能够严谨且无懈可击。此时,如果我能够再一次给予学生真诚的欣赏,相信孩子们对数学的畏惧之感会消失殆尽。但吝啬的我依然是忙着赶进度,生怕因为一句表扬会耽误好多练习的时间。哎!
还有,本节课在课前我仍然是准备了两个完全相同的梯形,在学生想到方法之后让孩子们自己动手上来拼拼看,然后找出拼出的平行四边形与梯形的关系,进而有平行四边形的面积=2个梯形的面积,则1个梯形的面积=(上底+下底)×高÷2。看样子,让学生亲自动手实践或者是用直观演示法更能够让学生明白“公式”的来龙去脉,记忆和运用起来也必定是得心应手。。根据平行四边形的面积公式,从而导出梯形的面积公式,给人一种水到渠成的感觉。归纳出公式后给学生三个梯形(有两个把梯形的各边都写上,另一个没有给高的条件。)进行公式运用练习,最后再让学生在实际生活动感觉梯形面积公式的作用,即计算梯形木堆的面积。
但由于我课前准备做的不充分,在课堂上出现的问题何止一二,还有:
1.在整个教学中又过于偏向推导过程和注重学生多种不同推导方法,时间占用了很多,导致后面的练习时间不够充足。
2.由于推导出公式以后,学生在练习的时间很少,应该画出几个梯形图形,让学生应用公式求它们的面积,以巩固本节课的重点。
3.以后的教学要在新授部分多下功夫、下大工夫,但是不能把一节课大部分的时间都放在了研究新知的过程中,尽量浓缩自己的教学语言,让我们的课堂更有效。
可喜的是,发现学生有所收获,看到学生有了进步,看到学生探究学生的成果,在今后的教学中我会继续运用“探究性学习法”设计和组织课堂教学。希望探究式课堂之路在我们今后的教学中能够越走路越宽。
《梯形面积》 2
教材分析:
本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。
教学目标:
1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:理解并运用梯形的面积计算公式。
教学难点:梯形面积公式的推导过程。
教学关键:怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。
教学过程:
一、课前复习
同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?
(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)
请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的`新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?
(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)
2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动一:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。
全班汇报。
学生可能出现的情况:
(新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)
3、公式推导:
同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。
小组活动二:
现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?
小组交流一下,把你们组的发现或结论写下来。
全班交流自己的发现或结论。
归纳总结梯形的面积计算方法。
梯形面积 =(上底+下底)x高2 为什么要除以2呢?
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)
4、用字母表示梯形面积公式
同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。
其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。
(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)
三、应用公式解决问题
1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!
您现在正在阅读的《梯形的面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《梯形的面积》教学设计及反思课件出示例3主题图
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,
它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?
同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
订正时,让学生评价,重在理顺学生的解题思路。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, 学以致用,来解决生活的实际问题。)
2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)
四、练习检测:
1、填空:
两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(), 拼成的平行四边形的高等于( ) 、梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。
(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)
2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。
(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )
(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )
(3)梯形的面积等于平行四边形面积的一半。( )
(4)两个梯形面积相等,但形状不一定相同。( )
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
【 】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
《梯形面积》 3
在教学梯形的面积公式推导过程中,我所讲的话并不多,都是一些引导性的语言,学生能说出的,教师决不讲解,学生能解决的,教师决不插手。
教学中创设情境,让学生在不断交流与合作、不断相互帮助和支持中,感受合作交流的快乐与成功,在教学过程中,在有争议性的问题和有疑惑的.问题时安排适当的时间让学生合作交流是非常必要的。
在教学中,我作了一次集体性的评价:“哪个小组表现最好的?”在全课总结时安排了一次个性的评价:“你认为这节课谁表现最好啊?你自己的表现呢?” 只有进行正确、适度的评价,关注学生共性的同时,更关注学生个性,才能使学生从评价中受到鼓舞,得到力量,勇于前进。
多媒体课件的演示,可把教学内容表现得丰富多彩、形象生动。激发学生浓厚的学习兴趣和强烈的求知欲望,引导学生主动积极地参与学习。通过动态图象演示,不仅能把高度抽象的知识直观演示出来,而且其突出的较强的刺激作用有助于学生理解概念的本质属性。因此,在教学“梯形的面积”时,安排了多媒体课件的演示梯形的面积公式的推导过程,让学生通过演示,加深对梯形面积公式的理解。
通过了这节课的教学,学生理解了梯形的面积公式的推导,掌握梯形的面积计算,但在发展学生的创新思维方面较欠缺。
《梯形面积》 4
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的.能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
三、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
四、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
五、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
《梯形面积》 5
梯形面积公式的推导教学是在平行四边形、三角形面积的计算基础上进行的。由于有前两种图形面积公式的推导过程的基础,我想如果今天的课堂上采用学生独立学习的方式来自主推导梯形面积计算公式,不会有太大的问题。
授课伊始引导学生回顾前两种图形面积的推导过程,为学生下一步独立学习做好准备。接着交代本节课的学习任务:研究梯形的面积的计算方法。这时我发给学生每组两张完全相同的两个梯形,让学生自己运用学习过的`方法探讨研究梯形面积的计算方法。学生在探讨的过程中我深入学生的各小组,观察学生的研究情况。学生没用五分钟已经将梯形面积的计算公式推导出来了,并能比较熟练地叙述出来。反思以上的教学,能够相信学生,给学生独立学习的机会,让学生在合作交流中,自主探究,体会学习的快乐,从而增强了学习自信心。同时学生的参与度高,积极性强,学生理解的更深入。
从另一个角度分析,教师对学生还是不能充分信任,教学前的铺设,实际上就是给学生搭好了桥,修好了路。给学生准备了两个完全一样的梯形,看似教师为学生着想,殊不知这样剥夺了学生尝试失败的权利。这样的设计能让我感到一丝丝的欣慰,毕竟我放手了,毕竟学生主动了,毕竟学生参与了。这种欣慰只是表层的愉悦,对学生来说,是不够的。有人说:教学是师生共享人类的崇高,这种崇高,对于知识来说,应当有更多的智慧活动,我这样想。
《梯形面积》 6
作为一名高中数学教师来说 , 上好每一堂课,要对教材进行加工,还要对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果 , 更为关注结果是如何发生 , 发展的 . 我认为可以从两方面来看:一是从教学目标来看 , 每节课都有一个最为重要的 , 关键的 , 处于核心地位的目标 . 高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看 , 教学组织形式是教学设计关注的一个重要问题 . 如果能充分挖掘支撑这一核心目标的背景知识 , 通过选择 , 利用这些背景知识组成指向本节课知识核心的 , 极富穿透力和启发性的学习材料 , 提炼出本节课的研究主题 , 就会达到理想的效果。这也需要自己不断提高业务能力和水平 . 以下是我对本次课教学的.一些反思 . 。
一、对知识点教学的反思 —— 学会数学的思考
对于学生来说 , 学习数学的一个重要目的是要学会数学的思考 , 用数学的眼光去看世界 . 而对于教师来说 , 他还要从 " 教 " 的角度去看数学 , 他不仅要能 " 做 ", 还应当能够教会别人去 " 做 ", 因此我觉得反思应当从逻辑的 , 历史的 , 关系的等方面去展开 . : 本节课内容较为单一,目标也比较明确,就是用“以直代曲,无限逼近”的思想求曲边梯形的面积。然而,这种思想方法给学生带来的理解上的难度却不小,因为要真正理解这种方法必须对极限的思想要有比较清晰的认识。不过,新课程似乎为了避免增加学生的负担,而不要求深入介绍极限的概念,其旨在用最易于让学生接受的手段,使学生获得最有价值的数学知识。这节课亦是如此。基于以上原因,备课时我认为本节课有两大难点:一是如何使学生获得“无限分割,以直代曲”的思路;二是对“极限”“无限逼近”的理解,即理解为什么将近似值取极限正好是面积的精确值。
二、对学数学的反思
对于在数学课堂上的每一位学生来说,他们的头脑并不是一张白纸 —— 对数学有着自己的认识和感受。不应把他们看着 “ 空的容器 ” ,按照自己的意思往这些 “ 空的容器 ” 里 “ 灌输数学 ” 。这样常会进入误区,师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学 , 常常说要因材施教 . 可实际教学中 , 又用一样的标准去衡量每一位学生 , 要求每一位学生都应该掌握所讲知识 . 这也许是自己一直以来教学的困惑与障碍。让学生多多思考 , 在本节课中未能达到预设目标 ,仍有“满堂灌”之嫌 。
《梯形面积》 7
《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。
在设计这一课的教学时,我主要考虑体现以下这样几个方面:
1、紧密联系生活。让数学源于生活,归于生活。
数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。
2、体现学生的主体性,让每个学生都能主动参与学习。
学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习
的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的'面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。
3、着重体现学生主动建构知识意义的过程。
本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。
在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。
《梯形面积》 8
整个过程我都是以学生为主体,让学生在动手操作中先将梯形转化成我们已经学过的图形,在通过小组合作探讨转化后的图形与原来图形的联系,发现梯形的面积计算公式这样一个过程。由于学生在探讨三角形、平行四边形面积时已经有经验,在此直接交给学生自主研究,通过巡视发现很多小组都能研究出来,这是值得高兴的,但没中不足的有这几点:
1、为了我的计划而赶时间。很多题都是只让学生说一说,没有动手写一写加深记忆。说明我在备课的时候设计的不合理,没有做到精讲多练,在以后的学习当中还应多研究教材,将更多的时间留给学生。
2、板书问题。在和孩子们共同探讨时,我快速的写下关系式,但是不够严谨,所以在以后的教学中首先应该自己做好,才能要求孩子们做好。
3、算式书写格式问题。还是由于时间把握不到位,不敢让学生上台板演,最后导致在写作业的时候部分学生列出算是直接写得数,做的.不规范,这是我的一个失误。
4、随然学生说的较多,但总觉得学生说的太少,老师总想帮学生说出来,而且提问的范围也较小,说明自己在教学设计上还存在问题,不能很好的调动孩子们的学习热情,还需要自己的努力。
5、练习题的层次性不强。
课顺利的上完了并不一定就是完美的,经过反思还是有或多或少的不完美,只有把这些不完美后期改进了,那以后的不完美会越来越少。
《梯形面积》 9
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、创设问题情境,激发学生兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的.,所以马上就自发组合成探究小组。
二、以学生自主学习为主教师为辅的课堂教学理念。
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
三、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。
在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。
四、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。
但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
《梯形面积》 10
片段一:关注学生思考方法的多样化。
在讨论梯形的面积计算公式的时候,如,将梯形转化成其他图形的时候,各个小组发挥集体的智慧,想出了很多种方法。
师:下面我们一起来交流一下各小组的方法。
生1:我们小组用两个完全一样的梯形拼成一个平行四边形,平行四边形的面积我们以前学过,所以这是我们小组想的。
师:说得真好,哪个小组还有不同的想法?
生2:我们小组通过将梯形沿着对角线剪下来,分成两个三角形。
师:哪个小组的同学愿意起来评价一下他们小组的想法?
生3:我认为这个方法好是好,不过转化后的图形的面积怎么求啊?
师:对啊,你们小组能帮忙解答么?(老师要有一种装不明白的精神,激发学生好奇心和挑战欲)
生4:我们小组认为,虽然分成了两个三角形,它们形状不同,但是它们的高是一样的。根据我们刚刚学过的三角形计算公式可以求出。(其他小组的学生在这位小老师的`提示下明白了)
师:看看学生经过奇思妙想,想出了这么多的好方法,还有不同方法吗?
这时其他小组的学生争先恐后地介绍各小组的方法,有的用对折的方法,有的用剪拼的方法,真是八仙过海,各显神通。老师惊喜地发现,学生在推导梯形面积的过程中同时强化了转化的数学思想。
片段二:利用转化思想拓展教学视野,建立数学模型。
在本节课的拓展练习上,我是这样处理的:
已知等腰梯形上、下底的和是10cm,高6cm,求梯形的面积?想象一下,如果这个梯形的高还是6cm,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?
师:恩,这位同学非常灵活地运用公式解决这一个问题,想象一下,如果这个梯形的高不变,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?你估计它的上底和下底会是多少?
(在思考画出新图形的环节上学生遇到了困难,不知道从哪下手。沉思片刻有个女孩举手了)
师:你来说说看,梯形的上底和下底可能会是多少?
生1:上底4 cm下底6 cm。
(这时学生的热情瞬时被点燃,个个举高小手抢答下面可能会出现的情况)
生2:上底3 cm下底7 cm。
生3:上底2 cm下底8 cm,上底1 cm下底9 cm,上底0。5 cm下底9。5 cm。
师:如果继续往右走你想最终会变成一个什么图形?
生:三角形。
师:如果从一开始往左走,你想会变成一个什么图形?
生:长方形。
师:恩,也是特殊的一种平行四边形。
生2:哎,老师,我发现了一个问题。
师:孩子你说。
生3:老师我还有一点补充,在这个变化过程中,虽然面积都相等,但是各个图形的形状却不相同
师:讲得真好。对呀,这就是我们数学上的一种重要的变化规律:叫等积变形。看你们多么厉害,发现了这么多规律,真了不起,老师真佩服你们的思维。
师:通过我们刚才想象的过程,原来梯形的面积、三角形的面积、平行四边形的面积,它们通过变化是否可能存在一定的联系呢?到底有怎样的联系呢?今后我们继续研究。
通过这道练习题,帮助学生对本单元学过的平行四边形、三角形、梯形之间建立多边形之间的联系,建立平面图形的数学模型:
梯形面积的一般公式是:S=(a+b)h÷2
当b=0的时候,这个式子就变成s=ah÷2,即成为三角形的面积公式;
当b=a的时候,这个式子就变成s=(a+a)h÷2,也就是s=ah,即成为平行四边形的面积公式。
学生经历了这个过程,能比较直观地感受到多边形之间的联系。
【案例反思】
(一)把错误当成宝贵资源
课堂上我充分利用学生的现实资源组织学生深入学习。如果学生课堂上出现了错误或困难,我更是珍惜这些错误的生成性资源,并给予及时的点拨指导,实现柳暗花明的效果。例如在探讨两个三角形的面积计算公式的时候,有的学生往往找不出转化后的三角形的两个高相等,特别是找钝角三角形的高时,容易出错或出现困难,这个时候我会及时点拨:如果是这个以梯形的上底为底边的三角形,你能找到它的高吗?这时很多学生会会心地点头,进而继续深入思考,发现两个三角形高之间的相等关系。
(二)合作学习
现在的学生一般都是独生子女,自尊心、自我意识强,与人合作交往的能力不高。为此,教学中我创设情境,让学生在不断交流与合作、不断相互帮助与支持中,感受合作交流的快乐与成功;让学生在合作交流中自由地发表个人的见解,通过集思广益,促进认知的发展。这样,既利于调动起全体学生参与到学习的全过程,又利于培养学生团结协作和社会交往能力。我认为,在教学过程中,在学生遇到有争议性或疑惑的问题时,安排适当的时间让学生合作交流是非常必要的。本节课,在认识转化后的图形的高的时候,大家就出现了争议,有的认为两个图形的高相等,有的认为转化后的图形的高是原来图形的一半,此时我就安排了小组交流,小组中的每个成员充分发表意见,进而完善认识。
《梯形面积》 11
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
这节课我围绕着“通过学生发现梯形与已知图形的联系,自主探究梯形面积计算公式的`推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开的。并注意从每一个细微之处关心和爱护每一个孩子,比如揭示课题后,先了解哪些同学知道梯形面积的计算公式
哪些同学不但知道梯形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程,并鼓励每一个孩子要通过这节课的学习都能有新的收获。
不足之处:
1、学生活动不多,讲的有点多
2、小组合作学习效果没有真正提高,还处于理想阶段
3、总感觉有点费力,驾驭课堂能力不够
《梯形面积》 12
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。
在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的特征:只有一组对边平行的四边形。然后让学生回忆已学过的平行四边形和三角形面积的`推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的推导上,我让学生采用一个梯形和两个梯形来求。
用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。
《梯形面积》 13
本课内容:课本第14页至第15页例题6、例7及“试一试”、“练一练”
本课设计:一、复习旧知、导入新课二、自主探索、获得新知三、巩固练习、学以致用
关于第二个环节的反思。
课前我让学生先将课本第117页四组梯形剪下,并且逐一标上数字,课堂上做这道题时我直接让学生拿出事先准备好的图形,分组动手操作并填写表格,然后讨论表格后的讨论题。设计教案时,本以为图形已经标号分组,学生操作分析时应该不会有问题,但实际操作时,仍然有各种各样的问题,主要有:1.将两个完全相同的梯形转化成一个平行四边形的操作比较生疏;2.仍然有学生填写顺序出现错误;3.转化后的梯形数据分析有误;4.小组活动秩序混乱。5.回答讨论题时仍有困难。
现在回想起来,如果备课时能够预想到这些情况,那么课堂上这些错误都是可以避免的.。我可以在讲授例题6时,借助事先准备好的图形,向学生演示怎样将两个完全相同的梯形转化成一个梯形,并让学生模仿操作,而不是仅仅让学生观看课件里的动画演示。在学生操作例题7时,我可以先向学生分别展示各组图形以便学生对号入座,而不是全完放手让学生自己操作。在解决讨论题时,我可以带领学生结合图形来分析数据,回答问题。如果我能这样安排的话,课堂纪律应该更好一些,教学效果也可以更好。
当然本节课的教学,还存在着其他方面的不足,例如课堂上仍然是以教师为主,教师说的过多,学生处于被动地位。以后我将积极去听师傅董雯雯老师的课,多听多问多请教,多多吸取前辈的宝贵经验。
《梯形面积》 14
教学内容:
教科书88页和89页
教学目标:
(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力以及动手操作能力。
(3)进一步渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教具准备:多媒体课件
教学过程:
一、创设情境,引出问题
教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?
问:同学们这块地是什么图形啊?
生1:这是一个梯形。
问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?
生2:必须先知道梯形的面积。
师:今天我们这节课就来研究“梯形面积的计算”(板书)。
二、探究新知。
(1)、铺垫孕伏。
组织学生回忆平行四边形、三角形面积公式推导的方法及过程,
重点突出旋转、平移、割补的数学思想。
(2)、协作研讨,探求方法
1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。
师:谁能介绍一下这个梯形?
生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!
2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)
生4: (3+5)42=16(平方厘米)
生5: 542+342=16(平方厘米)
生6: (5+3)42=16(平方厘米)
生7: (5-3)42+34=16(平方厘米)
生8: (5+3)(42)=16(平方厘米)
生9: (3+5)24=16(平方厘米)
生10: 34+(5-3)42=16(平方厘米)
师生交流、点评……
3、总结规律,渗透数学思想方法
师:这些方法有什么共同的地方吗?
生11:结果都是16平方厘米。
生12:每种方法的计算过程中都用到3、4、5、2这几个数字。
师:这几个数字和梯形有什么关系吗?
生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:现在谁能猜一猜梯形的面积计算公式是怎样的?
生14:梯形的面积=(上底+下底)高2
师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?
生15:S=(a+b)h2
三、应用知识,解决问题
1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。
生16:(300+200)100210=2500(棵)
2、学生完成基础变式练习:“做一做”和练习十八的1~3题。
3、提高能力练习:共同探讨练习十八的第四题。
四、知识小结,体验学习的快乐!
:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的`教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
《梯形面积》 15
本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:
一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;
二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的达成之所以很理想,是因为本节课中我努力做到了以下两点。
一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的'基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
【《梯形面积》 】相关文章:
《梯形的面积》 08-25
《梯形面积》 08-31
梯形的面积 04-14
《梯形的面积计算》 02-09
《梯形面积》 (优)05-22
《梯形面积》 【精品15篇】05-22
《梯形的面积》教学设计06-15
人教版梯形面积教学设计11-22
《梯形的面积》说课稿11-20