首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >八年级下册数学

八年级下册数学

时间:2024-05-23 08:01:41 我要投稿

八年级下册数学 15篇[优]

  身为一名人民老师,我们的任务之一就是教学,通过 可以有效提升自己的教学能力,写 需要注意哪些格式呢?下面是小编为大家整理的八年级下册数学 ,仅供参考,大家一起来看看吧。

八年级下册数学
15篇[优]

八年级下册数学 1

  平行四边形在日常生活中随处可见,应用也很广泛,学生在小学已经学习过平行四边形,但小学阶段学生只认识平行四边形的概念,没有涉及平行四边形的定义、表示、性质和判定等。学习平行四边的性质和判定给我很大的启发和帮助,下面说说我的感受:

  1、注重让学生经历探索新知的过程。

  从学生已有的认识和经验出发,让学生通过剪、拼两个全等的三角形,得到了一个平行四边形开始动手探究,让学生亲自经历观察、操作、想象、推理与交流等数学活动。教师必须在备课时充分考虑到并为学生提供了很多很好的素材,给学生思考、探究、交流的时间和空间,使学生顺利完成探究活动。让学生在动手的过程中,培养学生爱学习数学的思想理念。。

  2、注重直观操作与说理的结合。

  在探究平行四边形的对角相等、对边相等、对角线互相平分等性质时,老师必须有意识地让学生进行有条理的思考,有规范的表达和交流。无形中引导学生在活动中自觉地思考,自觉地用语言说明操作的过程,养成说理有据的习惯。在中学的教学中更注重抽象思维,初中的这部分教学需要对所思考的过程进行整理分析,进行简单的逻辑推理,这就需要我们初中教师注重从中学的直观几何过渡到论证几何,从简单图形的计算过渡到推理证明。

  3、注重学生个体差异,满足学生多样化的需要。

  不同的学生由于数学的知识和积累的经验不同,他们的`认知方式与思维方法也有差异性。教师必须注意这一点,在教学设计要预先设置好多样化的问题,不同层次的问题,针对不同层次的学生,让他们都有参入到学习当中去,尊重学生解决问题有不同的水平。

  教师要做好中学与小学教学的衔接:

  (1)教师首先应该有意识的多了解小学的教学,多了解学生的认知水平和思维能力,这样才能真正做好备教材、备学生。

  (2)充分利用素材,通过一些有趣的例子展现数学的真实性,经历操作的过程,体会推理的必要性。

  (3)教师在平时的教学中要做好榜样作用,注重直观操作与推理说明相结合,多使用规范化的数学语言,板演规范化,让学生多接触规范化的数学语言。

八年级下册数学 2

  勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2)堪称数形结合的典范,在理论上占有重要地位.

  八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.

  基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

  1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

  2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。

  3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的'思想感情,培养他们的民族自豪感。

  教学难点将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+b2=c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。

  除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

八年级下册数学 3

  在教学中,我先通过生活中的实物图形引出梯形的定义,并由学生介绍梯形的有关概念。我们学习平行四边形时,通常会通过添加辅助线转化为三角形。

  在例题处理上,我以题组训练的方式出现。从学生熟悉的一个图形出发,放手让学生独立完成对该题目的.分析和证明,老师在中间又可以把相关的基本知识点做些复习和回顾。在熟悉图形的基础上,注重图形中所隐含的其它结论。让学生学会不要用孤立的眼光去看一道题,而是要学会去观察出结论之间的相互联系,能用联系的眼光去解决新的问题。这是几何学习中一种非常重要的方法。

  本节课的练习环节,我设计了让学生思维跳跃的部分。进行几何题基本条件的变更,及一题的多种添加辅助线方法证明,对于学生的思维能力有一个非常高的要求。同时也在告知学生:几何的学习是永无止尽的,希望同学们学习几何不要仅仅是为了完成一道道题,而是应该从不同的角度去考虑问题。

  上完课后,我发觉自己在教学上还有许多需要改进的地方

八年级下册数学 4

  通过例题由我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

  这节课的关键在前面的'这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

  在本课的教学过程中,我认为应从这样的几个方面入手:

  1、分式方程和整式方程的区别;

  2、分式方程和整式方程的联系;

  3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母;

  4、对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

  课堂效果:在这节课上,11班学生状态非常好,所有的学生都能积极思考,踊跃回答问题,感觉这节课的效果还是不错的。

八年级下册数学 5

  1.初中阶段,求函数解析式一般采用待定系数法.用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数点的坐标,最后代入求解.待定系数法确定二次函数解析式时,有三种方式假设:一般式y=ax2+bx+c(a≠0)、顶点式y=a(x-h)2+k(a≠0)、交点式y=a(x-x1)(x-x2)(a≠0,x1、x2是二次函数图象与x轴两交点的横坐标),我们要根据题意选择合适的函数解析式进行假设.

  2.存在性问题是一个比较重要的数学问题,通常作为中考的压轴题出现,解决这类问题的一般步骤是:首先假设其存在,画出相应的图形;然后根据所画图形进行解答,得出某些结论;最后,如果结论符合题目要求或是定义定理,则假设成立;如果出现与题目要求或是定义定理相悖的情况,则假设错误,不存在。

  3.分类讨论是一种重要的数学思想,对于某些不确定的情况,如由于时间变化引起的数量变化、等腰三角形的腰或底不确定的情况、直角梯形的直角不确定情况、运动问题、旋转问题等,当情况不唯一时,我们就要分类讨论。在进行分类讨论时,要根据题目要求或是时间变化等,做到不重不漏的解决问题。

  4.动点问题,首先从特殊的运动时间得出特殊的结论,再变为说明在任意时刻,里面存在的普遍规律,对于此类问题,常用的'解决方法是:先用运动时间的代数式表示出运动线段以及相关一些线段的长,然后通过方程或比例求出运动时间.

  5.求最短路线问题,它与求线段差最大值属于同一种典型题的两种演化,都是利用了轴对称的性质来解决问题,前者用的是两点之间线段最短,后者使用的为三角形两边之和大于第三边.

八年级下册数学 6

  对于“勾股定理的应用”的反思和小结有以下几个方面:

  1、课前准备不充分:

  基础题中是一些由正方形和直角三角形拼合而成的图形(与希腊邮票设计原理相同),其中两个正方形的面积分别是14和18,求最大的正方形的面积。

  分析:由勾股定理结论:直角三角形中两直角边的平方和等于斜边的平方。

  其实质即以直角三角形两直角边为边长的两个正方形面积之和等于以斜边为边长的正方形的'面积。但学生竟然不知道。其二是课件准备不充分,其中有一道例题的答案是跟着例题同时出现的,再去修改,又浪费了一点时间。其三,用面积法求直角三角形的高,我认为是一个非常简单的数学问题,但在实际教学中,发现很多学生仍然很难理解,说明我在备课时备学生不充分,没有站在学生的角度去考虑问题。

  2、课堂上的语言应该简练。这是我上课的最大弱点,我不敢放手让学生去独立思考问题,会去重复题目意思,实际上不需要的,可以留时间让学生去独立思考。教师是无法代替学生自己的思考的,更不能代替几十个有差异的学生的思维。课堂上老师放一放,学生得到的更多,老师放多少,学生就有多大的自主发展的空间。但这里的“放多少”是一门艺术,我要好好向老教师学习!

  3、鼓励学生的艺术。教师要鼓励学生尝试并尊重他们不完善的甚至错误的意见,经常鼓励他们大胆说出自己的想法,大胆发表自己的见解,真正体现出学生是数学学习的主人。

  4、启发学生的技巧有待提高。启发学生也是一门艺术,我的课堂上有点启而不发。课堂上应该多了解学生。

八年级下册数学 7

  在本节课的教学过程中首先明确目标是让学生如何找到等量关系,书本原先给出两个例子较难达到这个教学效果,原因是学生对毛利率的概念本身不清楚,按照书本的引入,一开始课堂就可能处以一种安静的思维很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才用学生经过自己努力思考之后完全能解答的题目作为第一题,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;其次应用题的难度设置上是层层深入,提问是分层次性,能够让不同层面的学生都有不同的体会与感受。

  将“毛利率”概念的问题采用调查的方法,能够有效发挥学生右脑在形象思维上优势,从而为后面的解答抽象的`逻辑、左脑理性思考做了准备;能够最大限度发挥学生原有的能力。

  公式变形,书本例题是才用将右边先进行变形,再倒过来分析,我认为学生的解答方法更具有对称美,在课堂中予以充分的肯定,这一方面培养学生的审美能力、更重要的是肯定学生进行思考的价值、从而激发学生思考的意愿与热情!

  其实任何一节课的教学设计以及对课堂的动态把握只能针对具体实际情况进行调整分析,如果学生对“毛利率”等概念已经非常熟悉、阅读理解能力很强那么这节课的教学设计肯定是另一番样子。

八年级下册数学 8

  1、教学理念的把握

  本节课本着“三为主,五环节”的教学模式,主要突出了学生的主体地位,教师的主导作用,学生学会学习为目的,数学落实训练为主线。

  2、题目的设计与处理

  以问题串的形式抛出问题,从易到难,分解了难点,让学生在独立思考和合作交流中及解决了问题又实现了对新知的学习。,重视学生的学习过程,教师注重方法点拨,策略知道,规律型的东西的总结。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的

  思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,

  学生与教师之间以“对话”、“讨论”为出发点,采用独立思考,以互助合作,讲台展示,屏幕讲解,等手段以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

  4.对学生做出正确的评价

  对于学生的回答给予正确的评价,鼓励语言到位。

  5.学生亮点:整堂课,学生的表现非常优秀,在一位女生讲解问题二的之前,我还担心她说不清,但是却把每个空都用等量关系先表达出来,然后又用分式或整式的形式填写,做到了“空空有等量,步步有依据”,她的回答太精彩了,同学们给了她热烈的掌声,所以我们一定要放开手,不要吝啬自己的“三尺讲台,让这块宝地变成学生的'地盘。

  师生关系:通过这节课,发现和学生的关系更亲近了,在课上老师和学生就像朋友,教师要走到学生中,聆听她们想法,并参与其中。征求她们的意见。

  6.应急处理恰当:在这节课上,学生的积极性超出了课前设想,在处理“捐款问题”中,很多同学都直接站起来要回答问题,,因为这节课,他们表现的太优秀了,于是我征求其中一位同学的意见,问他可不可把这样的机会让他其他同学,他欣然的答应了,而且是让给了我们班最羞涩的一位男生,这时候我看着他怯生生的看我的眼神,我面带微笑说“李斐同学是比较羞涩的,但他学习认真刻苦,请同学们给他加油”这时候,教师想起了一片掌声,当他还是有点不好意思的将问题讲完的时候,我顺势说“他说的好吗”同学们都说好,于是又是一片掌声。当他回到座位要坐下的时候,我及时问了一句“有信心了吗”这次他的声音很响亮“有了”这样我和我的学生就完成了一次对性格胆怯的学生的信心教育,同时这样的处理方式又培养了同学们谦虚,谦让,团结互助的精神。

  7.不足,由于时间原因,擂台大比拼没有能够圆满完成,本来是想过这道问题,让大家知道一到应用题可根据不同的等量关系列出不同的方程,并能够识别哪些是分式方程,一道题可以同时考核两个学习目标,并设想通过学生独立完成在小组汇总,让学生主动到黑板写自己的答案,来培养同学们积极进取,勇于竞争的意识和团结合作的精神。以后教学中要对时间还有好好把握,及时调整,收放自如。

八年级下册数学 9

  实际问题与反比例函数的第三课时,主要是进行学生训练,从学生的训练情况看,涉及到反比例函数的知识内容学生掌握得还是很好的,主要是利用反比例函数的增减情况确定“至少”与“至多”问题的确定。但是,从学生的练习情况看,对课本55页的6、7两题和61页的第11题的最后一问,不少学生用算术方法分步列式进行计算的,在理解上有难度,在解决和应用上方法单一,没有用方程思想解决问题,说明了学生的数学能力有待加强。

  分析其原因,最重要的一点是学生阅读和理解实际问题的意思不够,不能整体把握题目的意思,因此采用逐个击破的处理方法,一个一个地列出表示各个不同意义的计算式,向目标逼近。不少同学就不能解决这样的问题。可以看出,教师还是要在学生遇到复杂问题时,给他们鼓励,教育他们耐心地研读问题(有学生没有静心理解题义);给他们方法,指导他们断句和分层,圈点关键词,整体把握数量关系;给他们示范,这里主要是对提问的处理,可以直接设元,还可以间接设元。

  在课前预设的`最后一题中,学生用面积关系解决问题的解题经验不够,对于已知本题AP与DE垂直,要探究两个变量AP与DE的函数关系,应该想到三角形APD的面积,而三角形APD的面积是矩形ABCD面积的一半,学生解决本题有难度。

八年级下册数学 10

  新课改理念下,课堂教学除了传统的知识与技能目标之外,还有过程与方法目标、情感、态度和价值观目标。三维目标,特别是后两者如何落实?

  我认为,这个问题不可一概而论,因为虽然每节课都有三维目标,但每节课的目标侧重点会因教学内容、学生情况而有所不同。对数学课来说,知识与技能是基础,思维能力的培养是核心,方法、情感、态度和价值观以及目标的实现都要依赖思维水平的发展。所以数学课必须在教学中揭示概念、定理、命题、公式、解法的形成、探索过程,而不是让学生仅仅通过模仿、重复训练达到会算即可,甚至死记硬背。

  本课有三个概念,对每个概念,都通过情景展示概念产生的背景(必要性),但根据概念特点,处理方式又有不同:数据的“波动性”重在理解和形象感受,通过散点图和比喻让学生理解;“极差”比较简单,则直接说明;最难的.“方差”,则通过步步深入的问题,引导学生体会确定方差公式的困难,让学生参与选择,最终理解方差公式的合理性。这样,学生不仅会算,还知道为什么这样算,还知道除了方差,还有其他选择,更重要的但也是最不明显的,在选择方差公式的过程中,体会了数学的合理性、严谨性,学习了面临困难和选择时的处理方法。所以说,概念也是训练思维的好材料。

八年级下册数学 11

  《测量旗杆的高度》作为一节活动课来呈现意在更好地让学生在实际操作中掌握相似三角形的判定与性质。通过测量旗杆的高度的活动,初步学会数学建模的方法,积累数学活动的经验,培养了学生自主探索、合作交流的学习方法和习惯。

  这节课上完之后,我感觉成功之处在于:

  1、立足于问题情境的创设。

  在课堂教学中创设良好的学习情境,充分激发学生求学热情,在兴趣情境中体验、探索新知识,是一节成功课的关键。当学生的学习投入到教师创设的学习情境中,学生就会形成主动寻求知识的内在动力,就会去自主地寻觅、探究和发现,学会怎么样学习,学生在这种学习情境中主动地学习所学到的知识,比讲授给他们的要丰富得多,而且更能激发他们的学习兴趣。在创设情境后,利用小组合作探索测量方法,教室里一下子“开了锅”,同学们争先恐后地表达自己的见解,提出了很多方法,其间不免有不同见解的争论:有的认为,利用阳光下的影子方法好,它使用工具少,操作又方便。有的认为,利用标杆方法好,这种方法在不出太阳的情况下也能操作。有的认为利用镜子的反射方法好,它可以把科学和数学知识结合起来。有的说,把气球升空的方法最简单……同学们兴致越来越高,课堂气氛异常活跃。

  2、注意培养学生的问题意识。

  问题解决后,教师应让学生从解决的问题出发,通过对题目的拓展,引导学生用新的思维去再次解决新问题,这样不仅让学生掌握了更多的知识,还能让学生的思维得到升华。

  当学生在活动完“利用阳光下的影子”测量旗杆的高度时,教师适时提问:“在没有影子(阴天)的情况下,还能测旗杆高吗?为什么?”“还有其他测旗杆高的方法吗?”学生有了疑问才会产生一种探索的兴趣,有了兴趣才会去进一步思考问题,才能有所发现,有所创造而且把自己不同的看法说出来,大家一起交流,再通过小组实验操作,很快就得出结论。显然,教学中教师善于设置问题,通过质疑让学生体验达到以疑激趣、以趣激思的效果。同时促进学生思维的发展。 3、培养学生自主探索、合作交流的学习方法和习惯。

  《数学课程标准》指出“学生是数学学习的主人,教师是数学学习的组织者,引导者和合作者。”因此,课堂上要注意发挥学生的主观能动性。在活动中及问题提出后,不急于回答,而是把学生组成若干个合作学习小组。问题完全由学生自主探索、合作交流去解决,教师只是适时地点拨、引导和补充完善。这样,学生在合作性学习和研究性学习的活动中不仅训练了学生测量、搜集、运用信息和数据的能力,而且培养了学生的科学探究精神和挑战自我、超越自我的意志品质,同时学生的人际交往能力、合作意识、集体意识、组织能力也得到了培养。

  纵观本节课,还存在很多不足之处:

  1、交流合作与动手操作的协调不够。本节课注重了让学生在动手操作的前提下展开交流与合作。但是从具体实施情况看,对于学习基础较差的.学生,在“动手操作”阶段的个别引导有所欠缺,因此这些学生感到无从下手而显得无所事事。

  2、教师没有参与到学生的小组活动之中,广泛了解不同层次学生的交流合作效果。具体操作活动中,教师应随时把握学生情况,及时指导鼓励学生。

  3、教师没有客观地对学生的操作活动进行评价。

  通过本节课教学,使我意识到今后应注意如下几个方面:

  1、不断更新教学观念,使数学教育面向全体学生,因材施教,让不同层次的学生在数学上得到不同的发展。

  2、要不断学习新的教育理论,充实自己头脑,指导新课程教学实践,拓宽教学思路,更努力的让数学生活化。

  3、营造良好的学习氛围,充分激发学生的学习兴趣。

  4、注意评价的多元化。对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

八年级下册数学 12

  一、设计思路:

  在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,

  由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。

  这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

  二、教学知识点:

  在本课的教学过程中,我认为应从这样的几个方面入手:

  1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的'解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

  2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

  3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

  4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。

八年级下册数学 13

  本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

  通过本节课的教学发现:

  1、有一小部分的学生还是不懂得看函数图像。

  2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。

  3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

  另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。

  1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的`信息,解决更多的实际问题。

  2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

八年级下册数学 14

  本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的`过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。

  本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。

  本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的话,有些问题可以由学生讨论解决。

  教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。

八年级下册数学 15

  本节课要求学生理解并掌握分式的加减运算法则,会运用它们进行分式加减运算。

  为了完成教学目标,我先让学生做两道同分母分数加减法的计算题,让学生通过类比的方法,得出同分母分式运算法则及注意事项,然后遵循由浅入深,由简到繁的原则,先讲同分母分式的加减,同分母分式的加减法比较容易,它是进一步学习异分母分式加减法的基础。异分母的分式加减运算与同分母分式加减运算相比要因难一些。这里主要是做好"转化”工作,即把异分母的分式加减运算转化为同分母的分式加减运算,“转化”的关键是通分,而最简公分母的寻找是通分的关键,因此可先通过异分母分数的加减方法,与异分母分式的加减相类比,找出各分母系数的最小公倍数,各分母所有因式的最高次幂的乘积作为最简公分母,然后再通分。

  另外,这节课为了达到教学目标,突出重点,通过问题的提出,学生的列式,从对同分母分数加减法法则类比出同分母分式的加减法法则,从对异分母分数的'加减类比出异分母分式的加减法法则,同时引导了学生把一个实际问题数学化。低起点,顺应着学生的认知过程,阶递式的设置台阶,使学生自然的归纳出法则,在运用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去演算,暴露问题,再指出问题所在,为后一步的教学提供较好的对比分析的材料。引导学生发现总结多种解题技巧,并比较优劣,通过分析题目的显著特点,来灵活运用方法技巧解决问题,锻炼和培养他们的发散思维能力。

  在教学中还存在着很多不足,在今后的教学中进一步改善。

【八年级下册数学 】相关文章:

八年级下册数学 01-07

八年级数学下册 04-24

八年级数学下册《二次根式》 02-22

八年级下册物理 04-29

八年级生物下册 10-14

八年级下册生物 01-08

语文八年级下册 03-20

八年级下册历史 03-28

八年级地理下册 04-22

Baidu
map