首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >《函数》

《函数》

时间:2024-05-26 16:45:00 我要投稿

《函数》

  身为一名刚到岗的教师,课堂教学是重要的工作之一,通过 可以有效提升自己的教学能力, 应该怎么写呢?下面是小编收集整理的《函数》 ,欢迎阅读与收藏。

《函数》

《函数》 1

  具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

  创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的`合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

  本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。

  首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。

  其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。

  为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。

  在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。

  作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。

《函数》 2

  今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差。现在如果还是和原来那样复习,效率肯定不会好。以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评。可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成。今天复习的时候给自己定了一个复习计划。

  对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备。从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程。对于二次函数的综合运用还存在一定问题。同时还有求函数解析式,对于顶点式,和一般式也有一定的问题。利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调。

  一、本章知识点的主要内容有:

  1、二次函数的概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数。

  2、求二次函数的解析式。用待定系数法求,设有三种形式,一般形式,分解式,配方式。另外还有根据实际问题求解析式。

  特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。

  3、二次函数图像的信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。

  4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”。

  5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和—1时的函数值来确定。

  二、成功之处:

  教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。

  三、精彩之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(—1,—6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:

  1、通过已知顶点A的坐标(—1,—6),你从中还能获取什么信息?

  2、在不改变已知条件的'前提下,你能选用“一般式”吗?

  设计意图是:

  1、由顶点(—1,—6),可知对称轴是直线x=—1,函数的最大(小)值是—6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。

  2、挖掘顶点坐标的内涵:

  (1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=—1对称点p’的坐标是(—4,3);

  (2)用点A、点p和对称轴;

  (3)用点A、点p和顶点的纵坐标等。

  3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。

  内容及问题串如下:

  四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

  五、反思之处:

  反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;

  反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;

  反思三,教师的经验是宝贵的,一定要开诚不公的交流;

  反思四,工作的责任心是必要的,一定要无私奉献;

  反思五,教师的工作是高尚的,来不的半点虚假。

  总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。

《函数》 3

  根据市骨干教师交流学习的安排,我在九年四班上了《2.1二次函数所描述的关系》这节课。这节课我首先让学生思考了列两个函数关系式的生活实际问题,然后又对函数的定义和分类进行了巩固。接着在学生探究两个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。

  课后,组内的老师认真地评析了本节课。结合组内老师的评课,我自己也进行了认真反思。

  成功之处:

  1、对二次函数的学习,本节课通过丰富的现实背景,通过学生感兴趣的问题,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动(经历数学化的过程),通过学生之间的合作与交流,通过分析实际问题,如探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系、

  2、设计大量的可以表示为二次函数、利用所学的二次函数知识可以解决的实际问题,发展学生的数学应用能力;利用“想一想”,提出进一步的最大产量的问题;用统计的方法得到关于最大产量的一种猜想,问题的最后让学生初步感受二次函数能解决最优化的实际问题。在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数;在以上两例的基础上,给出二次函数的定义,并举出以前所见到的一些二次函数关系式,为新知的理解做好了铺垫。

  3、在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的`新知,课堂达到了较好的教学效果。

  4、本节课我注重训练学生书写的规范性,让学生养成良好的答题规范习惯。

  不足之处:

  1、在分组教学时,对用统计的方法得到关于最大产量的一种猜想,课堂上有一部分学生没有充分参加计算,此处给学生的时间少一些。

  2、在“做一做”的活动中,把两年后的本息和y与年利率x的关系表示为二次函数的过程中,没有让学生有更多的交流和互相评价,有些学生对列函数关系式不是完全理解;

  总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

《函数》 4

  整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的量适当,表达流利,跟学生的互动性好,学生的参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的'学习态度。

  然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的文字等形式去补充过渡,让学生有突兀的感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。

  对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。

《函数》 5

  在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。

  在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的.图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系。然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法。并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔。

《函数》 6

  本节课的复习目标是:理解一次函数的关系式,掌握一次函数的图象及有关性质;会用待定系数法求一次函数关系式;能运用一次函数的相关知识解决简单的数学实际问题,培养学生数形结合的能力。教学重难点为一次函数关系式及图象性质的综合运用。对于本节内容我将教学案分为三部分:

  一、课前复习;

  二、例题精讲;

  三、课堂作业。

  有效的课前复习它有利于督促学生及时复习回顾本节内容,有利于教师了解学生掌握知识的情况,所以课前我先将学生的复习作业及时批阅,课上将学生作业中失误率较高的题目及时评讲,查漏补缺;课上选取典型的例题,其中考查的`知识点有已知点求直线的关系式,有已知直线求点,一次函数的增减性、一次函数与方程、与不等式之间的关系,有利用数型结合的思想解题,有一次函数与坐标轴围成的图形的面积问题,也有一次函数的实际应用等等,在例题的选取上基本已将大多数知识点容纳其中,课上在学生的主动参与下,一起完成了例题的讲解,最后还剩下不到5分钟的时间一起完成课堂检测。

  本节课中始终以一次函数的图象与性质为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的进行复习讲解,本课采用“教学案”的形式,实现了课下与课上相结合,学案与教案相结合,学生自主学习与教师讲解诱导相结合,让学生自主、探究、主动地学习。把思维空间留给学生,把学习主动权还给学生,把自主时间还给学生,同时“教学案”的设计注重了夯实基础,复习实行“低起点、多归纳、快反馈”的策略,注重激发全体学生学习数学的自信心,教学中也注重学生解题的准确性及表达的规范性。当然本节课也有很多有待改进的地方,比如课上老师的总结有时不及时,在讲解直线上点P使得PM+PN取得最小值时总结不够,应该将题目中的共性找出来分析,找出题目中的基本量进行分析,有利于学生遇到变式题时不至于无处下手。

《函数》 7

  立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的

  第一节复习课,教学重点为二次函数的图象性质及应用。

  最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的'具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理

  二、

  2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷。

  2.本课遵循尊重学生,相信学生,依*学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动 。

  3.在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

《函数》 8

  昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

  由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的'方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

  总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

《函数》 9

  这节课在学习了二次函数的基本形式和二次函数的图象、顶点坐标、对称轴等性质的基础上来学习用二次函数解决实际问题。学生对前面所学的知识已经掌握,但综合应用能力较差。因此在教学设计时将本节知识分两课时进行,这节是第一课时,从课堂上学生的反应和课堂练习可知本节课教学效果较好,大部分学生能准确分析题意并能写出函数关系式,培养了学生理论联系实际的能力和分析问题的能力;但在确定自变量的取值范围和函数的最值时只有少数学习较好的.学生能准确解答,这说明稍复杂的数量关系分析是学生的难点,单一的知识应用能准确找到解决途径,而综合起来应用学生就有些茫然,无法确定切入点。

  本节课在两个地方学生出现疑难:一是分析题意时理不清价格和数量之间的对应关系;二是不能准确判断自变量的取值范围和函数的最值。对于这些难点我是这样处理的:

  首先在回顾了前面的知识点后提出实际问题:某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?在分析题意时学生能分清涨价、降价所对应的商品销量,但一小部分学生依教材上的解题思路不能理解售价和销量之间的对应关系。对于这个难点我是这样处理的:设每涨x个1元,则每件售价为(60+x)元,少卖出10x件,共卖出(300—10x)件;每降价x个1元,则每件售价为(60-x)元,多卖出20x件,共卖出(300+x)件。重点强调“x个”!虽然在分析中只多了个“每(涨或降)…个1元”,但就这几个字却能帮一部分学生理清关系和思路,如涨3元8元的问题,则售价为(60+3x)元或(60+8x)元,这样学生从最小单元开始分析,逐层递进,很容易理清思路找准关系。这个关系弄清了,函数关系自然水到渠成就写出来了。

  其次是由函数解析式确定最大值,而确定最值时必须考虑实际问题中自变量的取值范围。在这个问题中x首先是非负数,同时(300—10x)也是非负数,所以x大于等于0且小于等于30。结合函数解析式y=-10x2+100x+6000可知该函数图象开口向下,有最大值。由顶点坐标公式可以计算出当x=5时(在自变量的取值范围内),y有最大值,且此时y=6250。强调此时不仅要考虑顶点坐标公式,还要结合题意看这个x值是否在其取值范围内。x值确定后将其代入就可求出最值y的大小。

  从学生课堂练习来看,大部分学生会用这个分析方法解决相应问题。虽然这节课没能按课时安排学习探究二的问题,但学生能掌握商品涨(降)价与售价、利润间这类问题的分析并会列函数关系也算是一点点收获了。

《函数》 10

  反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。

  课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。主要表现在:

  1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。

  2、重视合作交流,使学生在合作交流的过程中真

  握作图的技能

  3、相互评价可以培养学生之间团结合作的精神

  在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。

  4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法

  反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的能力。

  数形结合是数学学习的`一个重要思想,也是我们学习数学的一个目的。近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力。

  通过这节课给我带来了更深的启示:在素质教育不断发展的今天,作为教师,我们应该不断更新自己的教学观念,要有崭新的科学指导思想,以创造性的教学劳动唤起学生的学习数学的创新意识,提高学生学习数学的积极性,让学生充分从事数学探究活动,发挥学生学习的自主性、主动性,让学生在探索中不断地发展。

《函数》 11

  优点

  1、教学目的明确,突出重点、基本完成教学任务。作业新颖,适中。

  2、教态自然大方,语言、表情亲切,面部表情丰富。教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。

  3、选题有趣味性、针对性强。选择贴近生活的中考题,并采用了灵活的形式组织教学,使整 个教学过程充满活力。

  4、学生自主且自信。自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。

  5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。

  建议

  1、进一步加强近几年我省相邻地区和课改地区中考试题研究。

  2、立足教材,夯实基础,落实好基础知识,面向全体。

  备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。引导学生自由发挥他们的想象力,而不是一味的让以有的.事物或形象局限了孩子们的想象力。想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?

《函数》 12

  复习目标:

  知识目标:

  1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;

  2、一元二次方程与抛物线的关系.

  3、利用二次函数解决实际问题。

  技能目标:

  培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。

  情感目标:

  1、通过问题情境和探索活动的创设,激发学生的学习兴趣;

  2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

  复习重、难点:函数综合题型

  复习方法:合作交流

  复习过程:

  一、知识梳理

  1、二次函数解析式的三种表示方法:

  (1)顶点式:(2)交点式:(3)一般式:

  2、填表:

  抛物线对称轴顶点坐标开口方向

  y=ax2

  当a>0时,

  开口

  当a<0时,

  开口

  Y=ax2+k

  Y=a(x-h)2

  y=a(x-h)2+k

  Y=ax2+bx+c

  3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的'增大而

  4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值

  自评分(每空4分,共100分)

  二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)

  已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:

  (1)abc(2)b2-4ac(3)2a+b(4)a+b+c

  (上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x=1时y的值)

  2、已知抛物线y=x2+(2k+1)x-k2+k

  (1)求证:此抛物线与x轴总有两个不同的交点;

  (2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22=-2k2+2k+1,①求抛物线的解析式

  ②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。

  (此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)

  三、归纳小结:

  提问:通过本节课的练习,你得到了什么?

  四、用数学(利用二次函数解决实际问题)

  一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,

  (1)根据题意建立直角坐标系,并求出抛物线的解析式。

  (2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?

  (此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)

  五、拓展提升(供学有余力的学生做):(屏幕显示)

  已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0),B(x2,0),(x1≠x2)

  (1)求a的取值范围,并证明A、B两点都在原点的左侧;

  (2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。

  课堂反思:以前的复习课总是写满几块小黑板,弄得手上全是粉笔末,一节课下来,光是翻转小黑板就把自己搞得迷迷糊糊,并且学生还喊道:看不清楚。现在好了,利用多媒体,可以把要讲的知识点、学生要做的练习毫不含糊地全部展示给学生,确实做到了高容量、大密度。感觉很好。

《函数》 13

  今天讲授二次函数y=ax2+bx+c的图像与性质,首先提供了一系列的情境,使学生体会建立二次函数的重要性,然后以例题的形式通过配方研究具体的一个二次函数y=ax2+bx+c的对称轴和顶点坐标,从而得出它的性质和图象,并进行针对性练习。再由特殊到一般,以例题的形式通过配方推导出二次函数y=ax2+bx+c的对称轴和顶点坐标的公式,再进行针对性练习.

  在完成上述的教学内容后,结合本班级的学生实际,我感觉对学生的学习不能只停留在给定一个二次函数如何用配方法或者是用公式去求这个函数的顶点坐标和对称轴。应该可以对学生提出更高的要求,于是我通过设置游戏进行拔高练习,最后通过设置几个小问题,对整堂课进行总结。

  一一审视这堂课的教学全过程,我带着遗憾带着疲惫,当然更多的是沉甸甸的收获。教学有法,但无定法,贵在得法。教学的最终目的是为了实现教学目标,在所有教学内容的确定,教学情景的`创设及课堂教学结构的安排,通过上课我认为还需更加注重实效,注重我们学生的实际情况,更重要的是注重学生个体差异方面做得还很不够。比如在游戏环节中,抢答的总是好学生,作为差生,可能连思考的机会都失去了。

  教学应该是一个连续的,环环相扣的动态过程,在这节课中,我个人认为在这个内容的连接上,还不够自然。

  新课标指出,数学应源于生活并用于生活,但在这方面我觉得在这堂课中体现得还不够,也许是受到这个教学内容的束缚,因为这是二次函数图象与性质是二次函数的起步阶段,所以很难与生活实际联系。但这也是一个很大的遗憾,还有就是在教学基本功上,我也存在很大不足,特别是在板书方面,不够工整,这些都需在以后的教学中,不断改进的。

  记得有人说过:“教学永远是一门遗憾的艺术。”而教学艺术水平是在不断解决不足和遗憾的过程中得到提升,我相信只有我们的真挚追求,不懈努力,教学业务水平一定会不断提高。

《函数》 14

  二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。

  由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:

  1、精心设计问题,引发学生思考建立数模

  在《二次函数的应用》的教学过程中,复习旧知后,主要安排了一道例3—水流最高点问题:人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷水水流的轨迹是抛物线。如果要求水流的最高点P到喷水枪AB所在直线的距离为1m,且水流的着地点C距离水枪底部B的距离为2。5m,那么,水流的最高点距离地面是多少米?以此题为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设计的问题如下:

  (1)读题,检索有用信息;

  (2)分析已知,他们讲的是什么含义?根据题意画出图形;

  (3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?

  (4)如何求二次函数的`最大值?

  学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。

  2、为学生提供思考的空间,注重一题多解

  学生在建立平面直角坐标系后,根据题意知道,对称轴是x=1,A点坐标(0,2),B点坐标(0,0),C点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。四班学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学生帮助他进行分析与补充。该同学将A、B、C三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,B点坐标不在抛物线上,不能将其带入。

  在教学中出现分歧时,要给学生空间去思考,发现问题的原因,从而确定解决得方法,避免今后出现类似错误。而六班学生善于思考,在用两根式求解析式时,我设计一个小陷阱,故意引导学生选用A、B、C三点求解析式,学生通过计算与观察,同样发现了这个问题:B点坐标不在抛物线上,不能将其带入求解。在这种情景下,追问:如何利用两根式确定解析式呢?学生积极性很高,小组讨论,学生根据抛物线的对称性找到它与x轴另一个交点D(—0.5,0),将A、D、C三点带入可求出二次函数的解析式。在教学中,要注重解题方法的灵活性,一题多解,开阔学生的思维,提高学生的发现问题,解决问题的能力。在教学过程中,层层设疑,激发学生求知欲,积极主动参与教学活动,大大提高了课堂效率。

  3、数学来源于生活并运用于生活

  例题3有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。课堂中,学生在解决数学情境问题的过程中,感悟数学来源于生活并运用于生活,激发学生学习数学的兴趣。在课上,学生因问题来自于身边而思维活跃,有强烈的探索欲望,这样才能充分发挥学生学习的积极性,进而提高课堂教学质量。

  4、不足之处

  《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。

  教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

《函数》 15

  这节课,我讲授的内容是《反比例函数的图像和性质》第二小节,讲完之后感受颇深:这节课从学生的角度出发,针对下面的中学实际儿设计的,没有流于形式,教学目的就是“用”,所以第三环节“自主检测”是检查以下学生对性质的`理解和运用情况,“思考”则是对性质的进一步探究:

  ①题是学生直接观察图像,并给解释清楚;

  ②题让学生动手操作,容易得到轴对称性;

  ③题中心对称性,学生不易观察,但设计了动画演示;“例题解答”是对方法和性质的总结实践,使学生懂得在平时解题中要善于总结和积累。“走进中考”是为了让学生认识中考题型,是教学为中考服务,这样既激发了学生学习的积极性,有给予了学生冲刺中考的动力!

  但也让我感到不足之处很多;

  1、把学生估计过高,欠缺对学生的引导铺垫

  2、准备仍不充分,觉得轴对称性通过学生的折叠很容易得到,故认为动画不用演示,所以没有设计动画演示,这使课上时间浪费较多。

  3、应该让学生成为课堂的主人许多东西应该让他们自主探究并总结。

  4、习题设计应该少而精。

  5、课堂有前松后紧的感觉,时间没有合理分配。

  通过这节课的讲解我发现学生存在一个普遍现象:

  1、回答问题时思路不清,语言不规范。

  2、学生不会写解题过程,书写还需改进。我看清自己在教学方面的不足之处,知道了自己今后努力的方向,“路漫漫其修远兮,吾将上下而求索

【《函数》 】相关文章:

函数的概念 03-14

《函数的图象》 04-25

反比例函数 05-15

二次函数的 05-21

对数与对数函数 04-21

正比例函数 04-22

初三二次函数 04-22

一次函数 02-22

二次函数复习课 09-24

Baidu
map