首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文> >乘法分配律

乘法分配律

时间:2024-07-03 11:37:52 我要投稿

乘法分配律 (范例15篇)

  作为一名优秀的人民教师,课堂教学是我们的工作之一,对教学中的新发现可以写在 中,那要怎么写好 呢?下面是小编收集整理的乘法分配律 ,希望能够帮助到大家。

乘法分配律
(范例15篇)

乘法分配律 1

  1、情境的创设激发了学生的计算热情。

  让学生在生动具体的情境中学习数学,这是新课标倡导的新理念.我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。

  2、多层的设计有利于学生数学模型的建立。

  首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的`区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。

  需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的表现会更出色。

乘法分配律 2

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律,是一节比较抽象的概念课。我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  具体设计:先创设兔子吃萝卜的情景,调动学生的学习积极性。

  通过买“老伯伯养了10只猴子,每只兔子早上吃4个萝卜,晚上要吃3只萝卜这些猴子一天共要吃掉多少个萝卜?”列出两种不同的式子,让学生通过观察两种不同的计算方法也得到了相同的结果,这两个算式也可用“=”连接。

  然后让学生观察这两个等式的特点,仿造上面的等式填空。

  (4+5)×25=(14+25)×5=(37+125)×8=。

  再让学生观察这几组算式,等号左边的算式有什么相同点?等号右边的算式有什么相同点?等号左边算式中的两个加数与右边算式中的什么数有关系?左边算式中的一个因数与右边算式中的哪个数有关系?使之让学生从中感受了乘法分配律的模型。

  从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c,他们确实能够体会到两个不同的算式具有相等的关系。

  第一步:通过资料获取继续研究的信息。

  虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。

  第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。

  第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

  本节课的'可取之处:

  1、为学生提供了充分的数学活动机会,把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现、去探索。

  2、使学生在辨析与争论中,自然而然地完成猜测与验证,形成清晰的认识,在学生举例中使学生感到乘法分配律的一个重要因素,最后由特殊到一般总结字母公式。

  3、将模仿式的学习变为探究式的学习。

  4、在本课的练习设计上,能力求有针对性,有坡度,同时也注意知识的延伸。

  本节课的不足之处:

  1、习题在安排上在充分理解《乘法分配律》的基础上,可以再安排一些具有思考性的题目,如78×99+78=78×(99+1),为后面的简便运算作伏笔,这样教学效果会更好。

  2、在数学术语上还得反复推敲,以达到准确无误。

  3、本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来。

  我会坚持不断学习理论知识,多听课多向前辈们请教,切实提高业务能力。

乘法分配律 3

  这两天学习乘法分配律,孩子们的普遍感觉是比乘法的交换律和结合律应用起来难一些。作业中的错误也很多,主要错在一下几点:

  1、78×(100+5)

  =78×100+5…………这种错误在于学生没有教好的理解

  乘法分配律:括号外面的数要分别乘括号内的两个数,再把两个积相加。

  2、85×99+85

  =85×(99+85)…………这种错误的原因在于个别孩子

  对式子中的数据理解不好,不明白加号后面的

  85表示的是1个85,可以看成85×1。

  3、104×25

  =(100+4)×25

  =104×25…………这种错误的原因在于有的孩子对乘法分配律的引用不熟练,变式之后又按照顺序进行计算,回到了原式。

  4、76×54+76×47-76

  =76×(54+47)-76…………有这种做法的孩子属于对乘法分配律的应用不够灵活,当遇到部分积较多的时候,不能较好的应用分配律进行简便算。

  5、25×32×125

  =(25×4)+(8×125)…………个别学生在做题时有一种惯性,学完乘法分配律之后,所有的题目都用分配律进行计算,不能灵活的选用运算律进行简便计算。

  综合学生出现的错误之处,可见大部分孩子对运算律能够较

  好的理解,只是在应用时不能够灵活的.应用。直接应用规律进行简便算的能准确理解,而需要变式的题目则不能较好的应用,也有个别孩子因为理解不清而不会应用。根据学生的情况,我采用相应的措施,以便让孩子们真正理解,灵活应用。

  一、个别指导。

  对分配律不理解的孩子,我进行个别的指导。具体是举一些相关的实际问题,让孩子用两种不同的方法进行解题,在解题、比较的基础上理解两部分积表示的意义,理解括号外的数要分别乘括号内两个数的道理,这样借助具体事例,形象的进行理解、概括,有助于学生对乘法分配律的掌握。

  二、对比练习。

  针对有的孩子把分配律和结合律混淆的情况,我设计针对性的练习,让孩子在练习中记性比较、分析,从而掌握。如:

  25×3×17×4 25×3+17×25

  比较两个算式的不同之处,说说算是中分别有什么运算,运用什么运算律才能简便计算,这样在比较的过程中学生能够慢慢区分乘法结合律与乘法分配律的不同,继而再灵活应用规律进行计算。

  三、针对练习。

  针对学生不能灵活应用规律进行计算的问题,我设计针对性的练习,让孩子在练习中说说自己的想法,比一比怎么计算更加简便,这样在比较、练习的过程中进一步掌握简便计算的方法。

  如:125×48

  因为刚学过乘法分配律,学生在计算125×48时,也应用分配律:125×40+125×8,针对这样的情况,我让学生再想一想还有没有其它简便计算的方法,引导学生用乘法结合律进行简便计算:125×8×6,再比一比:哪种方法更简便?这样在比较的过程中引导学生体会:用简便方法进行计算时,一定要先观察题目中各个数的特点,根据题目的特点选择合适的运算律进行简便计算,这样才能保证计算的简便与正确。

  通过对孩子错因的分析与相应的指导、练习,孩子们对乘法的运算律理解掌握也越来越好,作业的错误明显减少。看来,只要我们善于分析、引导,只要我们对孩子有耐心、有信心,孩子们就一定能够学会、学好!

乘法分配律 4

  ①1355+5587=55(13+87)=5513+5587

  ②8(125+9)=8125+9

  ③(100-7)25=10025+725

  ④9947=(100-1)47=10047-1

  ⑤35201=35(201-1)

  ⑥79125=125(80-1)=12580+1251

  ⑦79125=125(80-1)=12580-1

  ⑧1252532=1258+425

  ⑨88125=808125

  ⑩24335=(245)33=10033

  学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的.理解

  如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的.

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

  只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。

乘法分配律 5

  首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的'方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。

  通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

乘法分配律 6

  《乘法分配律》一直是四则运算定律的一个难点,学生最容易出错。比如38与99相乘,就容易出现“只把38与100相乘后再减1”的错误。还有的学生在计算125×48时,会出现“125×(6×8)=125×6+125×8“这样的错误。究其原因,还是未能真正理解乘法的含义和乘法的运算定律。

  在教学中,我也想了很多办法来解决这些问题,比如让学生背乘法分配律的含义,经常让学生做点这样的易错题。可发现效果不是很明显,尤其是有几个孩子,一会就忘记了。后来,我想:还是必须从理解乘法的意义中去学会乘法分配律。于是,我就在辅导这几名学生时,要求他们说出每一个算式表示的.含义,再说一说自己做错的算式的含义,从而在对比中来发现、理解自己的错误,明白了自己错误的原因后,再来思考正确的解题思路,经过几次这样的训练,效果好多了。

乘法分配律 7

  怎样才能化解乘法分配律的教学难点,我想,最终还得在情境中体验从乘法的意义上去理解。

  于是,我在教学时创设了许多的.生活情境,让学生多次的感悟和体验,学生从意义上有了较好地理解,比如:6×12+4×12,可以让学生理解成6个12加4个12共10个12,所以可以这样得出:6×12+4×12=(6+4)×12。

  从意义上的理解使学生最终摆脱了因强记模式而不会解的题,如:99×99+99,学生可以轻松地说出99个99加上1个99,一共100个99,99×99+99=100×99=9900。

乘法分配律 8

  乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

  一、让学生从生活实例去理解乘法分配律

  一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

  通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

  如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

  学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的.规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

  乘法分配律 是必要的,所以老师们一定也要好好地去对待。不断的反思,才可以促进不断的进步。以上面的文章,希望与各位同行们共同进步。

乘法分配律 9

  《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……

  1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。

  2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

  3、出示乘法分配律的几种不同的形式让学生进行练习。

  通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。

  当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的.不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。

  通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。

乘法分配律 10

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  一、在对本节课的教学目标上,我定位在:

  (1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  (2)初步感受乘法分配律能使一些计算简便。

  (3)培养学生分析、推理、概括的思维能力。

  二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:

  1、总体上我的教学思路是由具体——抽象——具体。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。

  教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、鼓励学生大胆猜想。

  猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的.必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。

  4、师生平等交流。

  教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

  5、将学生放在主体位置。

  把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

  三、教学中的不足和改进之处:

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:

  1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

乘法分配律 11

  在设计本节课的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合教学设计,对本节课进行以下反思:

  一、在 教学这节课时 ,我 以计算引入,复习旧知, 然后抛出一个较为复杂的算式“ 46×276+276×54”如何计算更简便,一下子学生们鸦雀无声了,他们陷入了沉思中,有的抓脑袋,有的摇头,很是难为,这是,我很“自豪”的告诉他们,老师能在一秒钟内说出得数,你们相信吗?想知道老师的诀窍吗? 一下子,把学生的求知欲和好奇心调动了起来。

  二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。 出示情景图后,请学生自己思考,交流 。通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。通过用自己喜欢的方式来表达乘法分配律从而加以内化。学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。

  三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,我都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的'知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。教师“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考。这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。

  在本节课的教学设计上,我体现新课标的一些理念,注重从学生的实际出发,把数学知识同生活实际紧密联系起来,让学生在体验中学到知识。通过创设情境,设置悬念,激发学生的学习欲望和学习兴趣。在练习题的设计上,我力求有针对性,有坡度,同时也注意知识的延伸。

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。有余数的除法 法国号 吃水不忘挖井人

乘法分配律 12

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律和结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算 。

  成功之处:

  1.本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的.买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(28+12)×44=28×44+12×44。

  2.加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。通过多种形式的练习让学生深入理解乘法分配律的意义。

  不足之处:

  1.在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。

  2.学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。

乘法分配律 13

  四年级《乘法分配律》数学

  乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

  一、让学生从生活实例去理解乘法分配律

  出示:

  每件上衣60元,一条裤子30元,买这样的服装5套一共需要多少元?

  学生解答:板书两种解法:(60+30)×560×5+30×5说说理由。

  在两个算式中间画=。

  即:(60+30)×5=60×5+30×5。

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的.意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,我设计了一系列的练习。

  1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□.....  2、在相等的一组算式后面打“√”:如16×7+24×7(16+24)×7□.....在这一组题目中我重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说这一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的式子。如:(2+3)×4=2×4+3×4.....提问:

  1)在这些等式中,等号左边的算式有什么特点?右边的算式呢?

  2)等号左边的算式和右边的算式有什么联系?

  3)从上面的观察与分析中,你能发现什么规律?

  通过练习学生对乘法分配律有了进一步的认识,最后归纳出了乘法分配律的字母表示:

  (a+b)×c=a×c+b×c。

  总体上我的教学思路是由具体--抽象--具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  问题:

  在练习中发现,很多孩子对形如:a×99+a或a×101-a的式子,解答时有困难。另外就是有时对形如:32×25×125的式子受学习乘法分配率的影响,也把中间改为加号了。

  所以需要加大练习的量,并重点加大指导的力度。

乘法分配律 14

  1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。

  乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的.理解。

  如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。

乘法分配律 15

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

  1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

  结合学生的掌握情况我觉得教学此内容需要注意以下几点:

  1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

  《乘法分配律》 11

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

  在课堂上,创设了植树活动的.情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

  在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

  通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

  所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

【乘法分配律 】相关文章:

《乘法分配律》 01-15

乘法分配律 11-11

乘法分配律 05-15

人教版乘法分配律 11-17

乘法分配律 (15篇)02-12

《乘法分配律》 15篇03-26

乘法分配律 实用(15篇)05-15

乘法分配律 合集[15篇]05-15

乘法分配律 汇总(15篇)05-15

乘法分配律 (集锦15篇)03-26

Baidu
map