等式的性质 锦集[15篇]
作为一位优秀的老师,课堂教学是我们的任务之一,通过 可以有效提升自己的教学能力,那么什么样的 才是好的呢?以下是小编整理的等式的性质 ,仅供参考,希望能够帮助到大家。
等式的性质 1
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的.性质1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。
接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受
不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
等式的性质 2
以前的教材中,在学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等求方程中的未知数。而现行的教材是借用天平游戏使学生理解等式的基本性质,在用等式的基本性质解方程。为初中学习移项、合并同类项等方法作准备。
教授这节课前,我先让学生自己预习,小组互说操作,完成设计好的导学。最后我再课件操作验证学生的结论,一步步引入等式的基本性质。
本节课,根据学生已有知识水平,从学生的生活实际出发,合理运用教材提供的素材,充分挖掘教材;课堂教学的过程应始终体现学生自主探究的教学理念,注意激活学生已有的数学经验,引导学生自己去思考;课上学生们紧跟我的思路,认真思考,积极的参加小组活动,学生表现很积极。
1、等式的性质体现了数学的对称美,教学中让学生在15分钟时间内充分利用天平的直观性,让学生观察、分析现实生活中的现象,并尝试用数学知识来描述这种现象,突出数学与日常生活的紧密联系,使学生获得关于等式性质的知识,并养成认真观察的学习态度。通过直观演示,帮助学生感悟怎样才能使天平的两端保持平衡,引导学生以等式的基本性质为解方程的基本方法,生动直观地呈现解方程的原理。这样设计既重视过程,又重视结论;既重视知识的教学,又
重视能力的培养。在教学中采取先扶后放、动手实验操作的形式,也为学生提供了更多的参与学习的机会。培养了自主学习、动手操作等能力,体现了以学生为主导,教师为主体。
2、猜想入手 ,激发学习兴趣。猜想是学生感知事物作出初步的未经证实的`判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
3、学生展示环节非常好,不仅仅展示了实验过程、现象,总结了规律,在展示过程中,能积极补充、质疑,个别同学质疑的问题很有价值。
但在教学中,我觉得对学生“放”得还不太够,其实可以尝试老师不演示,只提出实验要求,学生直接动手分组活动——利用天平游戏来探索等式的性质,教师对孩子们的活动进行适当的指导和适时的引导,这样更符合新课程理念。
等式的性质 3
阳光明媚,心情疏朗!
走进教室,看到孩子们的眼睛弯弯的,满含着欢喜。
【课前小思】
今天我们学习的是《等式的性质》。
课前最纠结的是“为何要用等式的性质解方程?”记得我小时候学习的是传统做法——用算式中各部分关系解方程。为什么现在要用等式的性质解呢?就为了和初中衔接?孩子们在备学中也有此疑问,还用了一个成语形容:明明可以用以前知识解决,而且也很简单,为何要多此一举!
课前,我询问了好多人,但总不能很好的理解。
昨天下午,再次修改教案时,问大树老师,他说,其实小学阶段学习的很多知识,学的是一种思想方法,老师不能就为了某个知识点而教。并且也要让孩子明白,学习了某种思想方法,那么以后到了初中、高中、大学,甚至到了社会上都能够灵活的解决问题。
下午的时候,李大也给我举了例子,他说到六年级有了复杂的应用题,解方程时,等式的性质还是很管用的。摘录了聊天记录如下:
绿水:为什么要用等式的性质解方程?
李:为了和初中接轨。
绿水:还有呢?学生认为这样解答不如算术方法简单。而且,他们看不出等式的性质有何深意,我也看不出。
李海东:主要就是这一点,其实没有用数量关系解方便
李海东:是的,我也不喜欢
绿水:请问等式的性质,以后有没有什么深远意义?我想来想去,都不理解。
李:为初中用的,为列方程解复杂应用题服务。
绿水:哦,现在的简单,以后的复杂,现在学习方法,为了后面解决更复杂的问题,是吗?
李:六年级列方程解应用题有些难度比较大
绿水:你能举个例子给我看吗?凸显等式的性质。
李:甲、乙两桶油,甲桶油的重量是乙桶油的3倍,如果从甲桶取出28千克,乙桶加入4千克,这时两桶油的重量相等,甲、乙两桶原来各有多少千克油?做做看,用等式性质好解绿水:两边同时减去X,就好做了,是吗?
李:你列个方程做做看就能凸显等式的性质优越性
绿水:3x-28=x+4,如果用算式方法,比较缠绕,但是两边同时减去X,就方便了,是吗?
李:是呀。
通过不同的交流,我终于有了底了,等式的性质,我来啦!
【课中点滴与思考】
1、从已经经验处,顺藤摸瓜引新知;
今天这节课,本来一开始,我是准备从书本例三的四幅天平图开始的,直接让他们独立思考、小组交流,发现等式的性质。这样开始的弊端是,刁钻的小孩总是喜欢有挑战,有趣的、能发挥出自己能耐问题。昨天备学他们已经看了书本,现在上课又是先看书本的四组天平图,有重复的嫌疑。孩子们不见的感兴趣,我这样寻思着。
后来欣赏了备学,想到了更适合孩子们的一招。
师:昨天,小雨在备学中说,大树,方程这个单元好像我们很容易“吸收”呀!天时也说,我感觉方程这个单元好简单呀!那范老师就来考考大家,请看图(出示教材例四),谁能列出方程?并能说出这里X是多少?
(孩子们听着,兴致高涨着,几乎所有的孩子都举高了手。)
一生列出方程,并说出X等于多少。
师:你们是怎么想的呢?(几乎所有的孩子都举起了手)
小恺:50-10=40,用和减一个加数等于另一个加数;
罗罗:x+10-10=50-10,x=40。
(罗罗是备学比较充分的孩子,她看到问题,能用等式的性质来解决了。)
师:对罗罗的方法有所了解的孩子请举手!(大部分孩子都举手了。)
师:对这个方法有一些自己观点的孩子请来说一说!(一部分孩子依然举着手。)
小岩:在等号两边同时加上或减去同一个数,等式还是成立的。
小彧:其实罗罗的方法就是用了等式的性质。
师:有预见力的孩子,也许听出来了,刚才陆岩说的就是等式的性质。今天这节课我们就来学习等式的性质,学完后,相信大家都会用罗罗的.方法来解方程。
(本节课学习的等式的性质,就是为了第二个目标学会解方程服务的,从备学中我了解学生对于解方程已经有了自己的一套方法,我何不调用他们的已有经验,顺藤摸瓜,引出等式的性质呢!
看似简单的将例题调一调位置,但是此中体现的意义却是不同的。学生因此更信服地去探究表达总结了。)
2、好玩的课堂,展现个性化的魅力
(1)等式性质的另类理解:
孩子们用自己的话语说说对等式性质的理解,宇杰说:我还有一种关于图形对等式性质的理解,一个轴对称图形在相同位置减去相同图形,得到的图形还是轴对称图形。
师:宇杰真会联想,能够从一个知识联系到另一个知识。
(2)个性化理解应用等式的性质解方程
小彧:应用等式的性质,其实就是,如果左边是+25,右边可以抄下来还是+25;左边是-18,右边还是抄下来-18。
小凯:要使等式左边只剩下一个x,就要看它原来是加上多少,还是减去多少。如果它是加上多少,你就减去多少,它原来是减去多少,你就加上多少。
师:真会观察。
小彧:其实这就是相互抵消了。
师:我们看看是不是这样!
小凯:为什么不直接用和减去一个加数等于另一个加数呢?而要这样加加减减。
我正想解释,可是底下还有一两个小手高举着,炜怡:因为在以后的学习中要学习到很复杂的方程,那时候就会用到等式的性质。所以现在要学习。
小彧:而且我认为用等式的性质解方程正确率更高了。
小立:如果把加号变成乘号,要使左边只剩下X,我们是不是就要除以相同的数了?
(3)全课小结时的联想
天豪:今天学习的等式的性质,我想到了以前学习的商不变的规律。感觉它们也是有联系的。
师:我们一起来想一想,不管是等式的性质,还是商不变的规律,其实都是研究不变中一些变化的规律,数学就是这么奇妙,千变万化的数字符号间,还有着不变的规律!
冲冲:我的收获是昨天学习了等式与方程,我知道了方程是特殊的等式,今天学习了等式的性质,正好用来解方程。知识都是相互联系的。
听冲冲这样说,我特别激动,带领底下孩子鼓掌!因为在备学中,冲冲提出的问题是:“方程有性质吗?”学完这节课,冲冲能用联系的眼光看待问题,解决问题,我感到“备学——课堂”犹如相伴孩子思维成长的一段旅程,孩子们思索着,收获着。多好呀!
课堂中,孩子们有自己的一套理解,这样的理解就是一种个性化学习的体现。如果能把这样的体验说出来,与全班分享,课堂就精彩纷呈了。再次看这节课中一些精彩的话语,感觉自己很快乐,像是一个在大海边捡贝壳的小姑娘,而孩子们的精彩,正是我找寻的闪光的贝壳。感谢孩子们,大胆表达,成就了绿树课堂个性化的色彩,愿每日守候。
等式的性质 4
教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础,等式的性质 。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。
你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。
按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练习*大出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:
一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的.学生不会格式, 《等式的性质 》。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。
三是备学生环节出现差错,这部分内容应该不难,但学生的现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。
四是教学内容确定不恰当,本来我是想,上课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的方法的解决。由于我班学生是我本期新接的,对学生了解不够,学生基础参差不齐,而且整体水平较差,因此安排两个例题有难度。
等式的性质 5
本节课中学生学习等式的性质是没有多大的难度的,在运用等式的性质进行解方程时,难度也不是很大。课本安排了不少解方程的题目,学生都能一一解决。仔细观察课本,其实会发现课本上在慢慢增加根据具体情境列出方程并解方程的题目。这是本单元的难点,这就需要让学生根据题目中的等量关系来写出方程。将等量关系写出方程和学生之前根据等量关系解答是不同的。
学生不太习惯,导致列的方程奇形怪状。这里有必要深入探究方程的含义。根据上节课的学习学生知道:方程是从等式演变而来。含有字母的等式才叫作方程。换言之,方程其实是一种含有未知量的等量关系的一种表达式。我们只需要将等量关系找到再将其表达成方程即可。学生出现问题的原因是以往大部分的'解题经验所写出的等量关系是从结果出发来写的,一切为结果服务这样一种逆向的思维过程。而现在写出题目中的等量关系却是从条件出发的一种正向思维。
虽然在三年级时,我们学习了从条件出发和问题出发两种不同的解题策略,但这离帮助学生形成这两种思维还是远远不够的。通过这样的分析,那我们在引导孩子列方程时,就要从条件出发,找等量关系来列方程了。先要帮助学生找出等量关系,在引导孩子根据等量关系表达出相应的方程。这一点的学习时必须的。
等式的性质 6
关于《不等式的性质》一节的教学,我在集备组的多次建议修改下,把不等式的概念、不等式的性质、运用不等式性质解简单不等式这三个内容整合到本节课;基本思路是:用比较数的大小引进不等式的概念;利用表格对不等式两边进行运算来探索不等式的性质并展开小组讨论加深对不等式性质3的认识;运用不等式的性质把不等式转化为的形式。本节课用的是平行班,强调的是实用性。从新课到练习都充分调动了学生的思考能力。小组讨论又锻炼了学生的创造性和合作性;为后续学习解一元一次不等式打下了一定的基础。自己在这节公开课吸取的经验是:
1、充分准备是保证。从怎么引入怎么引导学生填写表格及探索性质都进行充分的准备,写了份大概的讲话稿,在脑海里反复演练,以帮助克服紧张情绪。
2、专业术语阐述不够清楚,需要加强。部分学生会对数量关系中的“不大于”、“是负数”、“是非负数”等数学术语理解不清,我只是从字面上给予解释,并没有对学生为什么出错进行深究,导致学生在复习回顾环节出错又在新课后的巩固练习出错。
3、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到 化作之类的题目都卡住了。
4、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,但后来听教研员说这里才是展示教学个性的地方,并且可以训练学生的数学符号语言能力。
5、注意学生的反应。这个班平常回答问题等都比较积极。但这次他们也是第一次经历,学生也显得紧张,我没能缓解他们的紧张情绪,课堂气氛调动不出来。本节课是第九章的第一节课,内容安排的有点多,对于中下学生的`学习是不利的,但我没有在课堂及时的调整。准备在后续的课当中再反复训练,循环提高。公开课是对我的锻炼,不仅仅是教学能力,更是心理素质的锻炼。
总的来说,本节课勉强完成了教学任务,我要进一步学习的还很多很多,我会多多向前辈老师学习。
等式的性质 7
《等式的基本性质》 等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。起初,我们在设计这节课时,四条性质的教学力量分布得比较平均,等式两边同加、同减、和同乘的实验由教师演示,等式两边同除的实验再放手让学生独立完成。
在教学之后,我们发现这样的设计,重点不够突出,在经过了网络研讨和集体反思之后,最终形成了将等式两边同加的这条性质作为重点讲解内容,其它的三条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的`实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。
实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。
这一环节在实验的基础上让学生灵活的运用字母表示数的知识,在理性的思考,形象的演示的基础上,在推理后验证自己的想法,不仅学生的数学思维得到有效的训练,还使学生对等式的性质有了一定的认识。有了以上的实验基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便可以逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。
等式的性质 8
等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的`知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手 ,激发学习兴趣
猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证, 培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维, 培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说
促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,也有值得进一步探讨的问题。例如:让学生运用“猜想——验证”的方法探索规律,感悟等式的性质,这样的学习方式,学困生更像一个旁观者,教师该怎么办?
等式的性质 9
教前设想
这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。
这节课的内容不是很多,重点是让学生理解并掌握不等式的性质并用不等式的性质解一元一次不等式。对于不等式的性质,不是很难懂,这里完全可以放手给学生自己探索,自己总结,从特殊到一般,所以安排了三个思考题让学生分别总结出不等式的性质。利用不等式的性质解不等式可以参考利用等式的性质解一元一次方程的思想,要将不等式最后化成x>a或x教中情况
这整节课上下来学生学的比较轻松。一节课中,学生课堂的效率比较高,学生学习的效果比较好。
教后反馈
通过对学生课后作业的'情况的批改情况以及听课老师的意见,觉得这节课还有一些不足,表现为:
1、这节利用探索稿教学,学生自我学习,这要求学生的素质比较高。在学生要独立完成思考和总结这个环节可以让学生一活动小组的形式进行,活跃课堂的次序。
2、在学生总结不等式的性质的探索过程中,让学生直接从数字总结出不等式的性质比较困难,可以从数字到字母的过程中加入比较简单的数字和字母之间的加减乘除的题目,这样从特殊到一般的过度就比较顺理成章。
3、探索稿怎么去利用?其实一般探索稿可以在上新课的前一天发给学生,让学生利用课余时间预习,这样可以节约很多课堂的时间,然后在课堂上对答案,教师简单的讲解,处理疑问,但这要求学生的的层次比较高,教师在课前做好大量的准备工作。这节课由于内容比较简单,可以在课堂上处理,但由于内容比较多,整个课程比价经凑。
4、在批改学生的作业时发现,学生在不等式的两边同时乘或除同一个负数时,没有把不等号改变,虽然课堂上教师也做了特别的强调,这里还需要改进。
5、在讲解不等式的性质1和性质2中,借用了天平来讲解,不高效果不是很好,学生理解不是很好,可以考虑去掉这个环节。
6、其实在学生在黑板上板演后可以让学生来讲解。
7、在这节课的后面讲例题的过程中可以多让学生见几种题型,可以多找一点最近几年的与不等式性质相关的题目。
其实,在教学的过程中,我们教师往往重视教的过程,而往往忽视了学生学的过程,如过我们能够多让学生动手,动脑,多总结,掌握一个好的学习方法,这比我们教任何知识点都要重要。
等式的性质 10
一、教学前后对该知识点的认识和理解
等式的性质是本章的基础,是方程解法时的重要依据。解方程就是用等式的性质来施行一系列的恒等变换。因此,要正确理解和应用等式的性质。在教学过程中,安排学生通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法,这将为后面几节进一步讨论复杂的一元一次方程的解法准备理论依据。
二、教学过程的实施
这节课学生学习的主要内容是等式的二条性质,以及运用这二条性质解一些简单的方程,那么怎么来学习呢?如果直接就给同学们讲等式有这样的二条性质,然后就是反复的运用、反复的.操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了借助生活实际来学习这节课的内容,利用天平来加强对等式性质的直观理解,这样学生接受起来比较容易,掌握起来也比较的容易。
在新课引入这个环节,我先就利用天平,引出了等式的基本性质,同时还用了具体的数字等式来验证,而且还让学生用等式来表示这些性质,从本质上理解这些等式性质,从几个方面认识来加深学生的印象。然后过渡到等式性质的几个小练习,让学生们练习。在学生的练习中,更加深了学生对等式性质的理解。
在小练习中,学生很容易掌握等式的两边同加或同乘一个数或式子,但是同除一个数时,总忘了这个数不能为0,所以在这里我特意引导学生两边除以一个0时的结果,通过错题来探寻答案,主要考虑到给他们独立思考的空间,由此最终达到教学目的。
通过前面的小练习,学生理解了等式的性质,然后让学生利用等式的性质解方程,有助于引导学生研究方程的解法,在教学过程中,首先让学生明白解方程就是把方程变形为“x=a”的形式。同时在教学中,没有过早地使用“合并同类项”“移项”“系数化为1”等解方程的专门用语,这里就是要突出等式性质,使用等式性质考虑如何解方程。
等式的性质 11
在教学活动中,我有以下活动觉得比较好的:
建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。
前置学习检查的任务明确.数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点.因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善.
课堂设问、提问精心研究.在利用不等式的.性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立.提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态.
课堂内容的处理详略得当.利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评.本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结.
等式的性质 12
等式的性质分成两部分进行教学。第一部分教学等式的性质1既等式两边同加同减的问题,第二部分教学等式的性质2既等式左右两边同时乘或除以的问题,中间穿插解方程的教学。
例3的一,二组天平图,平衡的天平两端同时加上同样重量的物体,天平依然平衡,学生把图抽象成等式后,进一步归纳得出“等式两边同时加上同一个数,所得结果依然是等式”。三,四组的天平图,学生通过图发现平衡的天平两边同时减去同样重量的物体,天平依然平衡,将天平图抽象成等式后,进一步归纳总结得出“等式两边同时减去同一个数,所得结果仍然是等式”。最后把两句话总结成一句话,就是等式的性质一。这一节课不仅要学生总结出等式的性质一这个规律,更要在得出规律的过程中,发展学生抽象概括的能力,培养学生把生活中的表象概括,归纳,抽象成数学语言的能力。我在教学例三时,通过一系列问题引导学生,在这个过程中通过板书进行了整理,学生得出规律没有费很大的力气。
应用等式的性质解方程是这节课的重点内容,学生是第一次接触解方程,需要做详细的介绍。在教学例4前,练一练的第一题是一个很好的铺垫。练一练分两个层次,一是复习等式的性质,这里我重点问了为什么右边要加,借此强调等式的性质中的“同时”又问了为什么要加25,借此强调了等式的性质中的“同一个数”。二是为下面的解方程铺垫,问学生X—25+25可以进一步化简成什么。完成这个教学后,就进入例4,先出示天平图,让学生自己列出数量关系式。然后及时设问,这里的X是多少。学生这时候会有两种答案一种是运用等式各部分之间的关系(很少的学生),第二种就是运用等式的'性质来解方程,两种方法我没有做对错判断,只是强调要运用今天刚学到的知识来解决这个问题。解方程的过程完全板书,解用红笔写,强调格式。后面的检验也在黑板上板书,我在开始的时候是要求学生把检验的过程写出来的,以此来强调检验的重要性,效果还好。在教学练习一的第二题的时候,我要求学生先用文字说他们之间的数量关系,训练学生寻找等量关系式的能力, 为后面的列方程解决实际问题做准备。
等式的性质 13
本节课我采用创设情景激发兴趣,引导学生自主探究的方法开展。回顾已有的知识和经验创设出问题情景,引导学生的自主探究活动,教给学生猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,创设情景使学生进入一种“心求通而未得,口欲言而弗能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。教学中我以天平为直观形象引入内容,增加或减少左右托盘中的物体或砝码,然后我有采用小学的方式,将8=8这个等式两边同加或同减一个数,来验证猜想。使学生明确等式的性质,并能用列式的方法表达等式的性质。紧接着通过一个例题让学生掌握如何利用等式的性质1解一些简单的方程。在探究等式的性质2时,观看天平后,安排了两次探究活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。在这一环节上,留给学生思考的时间有点少。
在处理例题的时候我的原则是夯实基础,基本知识的掌握和基本技能的训练同学们必须非常地熟练,所以在做每一道题的.时候我都让他们说出是“为什么” 。设计两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答的时候有点耽误时间。
让学生通过总结反思,一是进一步学习的方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,学生以更大的热情投入到学习中去。!
等式的性质 14
不等式的性质是不等式变形的依据,也是探索解不等式方法的基础,学生掌握好本节内容是学好本章内容的关键;本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。学生经历不等式性质的探索过程,体现了学生的主体性地位,充分发挥了学生学习的主动性,对学生掌握不等式的.性质打下了基础;会解简单的一元一次不等式,并能在数轴上表示出解集,体会化归思想和数形结合思想;通过类比等式的性质,降低了学生学习不等式性质的难度,也为学生理解不等式的性质提供条件,初步培养类比和数形结合的思想方法。在不等式性质的探究过程中使学生经历类比、猜想、观察、归纳、比较的探究过程和启发式教学方式;利用多媒体,增强了不等式的对比的视觉效果,激发了学生的学习兴趣,帮助学生形象直观的发现规律,辅助对教学重点的突出。
本节课的开始并没有直接提问什么叫不等式,什么叫不等式的解集,而是让学生自己说出一些简单的不等式及其解集;在不等式性质教学过程中也是通过学生自主探究归纳总结出性质,改变了以教室为中心的思想观念。在“试一试”这一环节也没有先直接给出完整的解法而是让一个学生板演后发现问题才纠正补充完整。总的来说,这节课进行的还比较顺利,但是在学生探究不等式性质时,仅仅观察了给出的几个例子,而没有让学生再用其他的不等式或换其他的数加以验证,给学生留的空间太小,致使学生在对不等式的性质的认可、理解、记忆上出现了问题,以至于在做练习时不能准确熟练的说出是运用了什么性质,再者板书可能有些简单。今后要扬长避短,不断转变观念,改进教学。
等式的性质 15
本课教学的是等式的另一个性质“等式的两边同时乘或者除以同一个不是零的数,所得的结果仍然是等式”,并利用这一性质解只含乘除法的简单方程。在教学这一性质时,我利用课件,引导学生观察天平图,让学生在观察、分析、比较、概括活动中,自主探索并理解等式的.这一性质。并且能学会用等式的性质解只含有乘法获除法运算的简单方程。
在教学例题时,我采用由扶到放,在独立思考、小组合作交流的基础上得出等式的性质,充分体现了学生的自主性,有利于培养学生的自学能力。在练习设计上,体现层次性、针对性,从练习的效果上,学生能够利用等式的性质准确的解简单的方程,教学效果很好。
【等式的性质 】相关文章:
等式的性质 06-23
等式的性质 11-06
等式与不等式的性质 12-01
《等式的性质》 15篇03-11
等式的基本性质的 03-14
等式的性质 (15篇)03-11
等式的性质 15篇11-06
《不等式的性质》 05-27
等式的性质 精选15篇07-10
《等式的基本性质》 04-07