三角形的面积
身为一位优秀的老师,我们的任务之一就是课堂教学,借助 我们可以学习到很多讲课技巧, 我们应该怎么写呢?下面是小编帮大家整理的三角形的面积 ,供大家参考借鉴,希望可以帮助到有需要的朋友。
三角形的面积 1
在这次活动中,我执教《三角形的面积》这节课针对这节课我有如下反思:
由于有了探究平行四边形面积的方法,课堂上我放手让学生利用手中的学具探究三角形的面积计算公式。学生积极思考积极探究,想到了把两个完全一样的三角形,拼成一个平行四边形,三角形的高与底分别与拼成的平行四边形的高与底相等。拼成的'平行四边形的面积是三角形面积的2倍,再根据平行四边形的面积公式,推导出三角形的面积公式。同位之间进行交流,进一步理解推导过程。最后通过练习巩固所学。这是这节课的优点,把学生当成了学习的主人,留给学生足够的时间与空间进行探索交流。
在教学中存在着很多不足:
1、时间分配不够合理,留给学生探究的时间过多,导致后面练习总结的不够,使学生巩固的不够。
2、学生在与同位交流时,还算积极,但是在汇报交流时,大部分学生不愿意分享自己的看法,导致老师说得多,学生领会的不够。我觉得我存在的问题是没有想办法调动学生回答问题的积极性,可能是对学生了解不够造成的。
3、可能受平行四边形面积推导的影响,部分学生也沿着三角形的高剪开,再拼起来,一般的的三角形拼成了不规则的四边形,只有等腰三角形剪开后才拼成了平行四边形或长方形,出现这种情况,我觉得手忙脚乱,心里明白怎样给学生解释,但是力不从心,可能是心理素质的原因,害怕听课的老师笑话。
总之,我觉这节课很不成功,有许多地方值得继续研究,向用经验的老师请教,以这次讲课为教训,反思自己存在的不足,努力提高自己的教学水平,努力做一名合格的教师。
三角形的面积 2
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的. 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形的面积 3
本节课是在学生已掌握了长方形、正方形、平行四边形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的.教学理念,在获取新知的过程中大胆放手,引导学生自主探索,培养学生的创新意识和实践能力。通过创设情境,激发学生探索的欲望。数方格的方法是求三角形面积的一种方法,但不是最普通适用的方法,为了引起学生对探索三角形面积产生强烈的欲望,在学生用数方格的方法求平行四边形、三角形面积的基础上,我有意出示一块很大很大的草地,问学生还能用数方格的方法求它的面积吗?从而激发学生初步探究。
引导学生结合复习环节中的平行四边形面积的推导过程,想到把三角形转变成已学过图形的面积进行计算。组织学生在操作中探索三角形面积的计算方法。课前我请学生准备了一些三角形,课中让学生自由选择一种三角形(锐角,直角,钝角三角形),用剪一剪,拼一拼,摆一摆,移一移等方法进行操作、探索,在学生展示出各种转化图形后,引导学生主动探索、观察、发现、讨论、交流研究图形与已学图形之间的内在联系,大胆推导三角形的面积计算公式,培养了学生的自主创新精神。经历探索之后的获得的成功,是另人快乐的,学生对数学的感受是美好的,这正是我们教师的期待,放手让学生去做、去发现、去探索,让学生体会到成功的快乐。
三角形的面积 4
本节课主要是针对学生学习了三角形面积计算后安排的练习课。在本节课的练习中发现了一些问题。学生对三角形面积计算掌握情况比较好,知道求三角形面积需要知道底和高,也知道要除以2。但在具体的解决实际问题方面掌握情况不理想。比如说利用三角形和平行四边形的关系解决问题,学生在理解和具体运用时有一定的困难。从这也反映了学生对基本概念还是不够清晰,综合运用能力较差。另外,学生动手画图的能力也不理想。针对这些问题,觉得要从两个方面入手:一是需要通过各种形式的练习进行强化;二是在进行概念教学时要加大教学的力度,尤其是在学生较难理解的地方,要结合具体的教学内容采取各种形式进行强化,加深学生的理解和掌握。
求三角形的面积,高和底必须是相对应的,这一点,应该作为练习的重点。练习设计得很好,出示了几个三角形,告诉了底和高的数据,其中有一个三角形已知的'数据不是对应的底和高,可以让学生把得出的三角形面积公式应用在练习中。学生对于最后一个人图形大多得到了答案,老师再组织学生讨论,学生恍然大悟,连称上当。对于直角三角形,两条直角边就可以作为底和高。在学生的思维中,斜边才是底,这应该是由于惯性,在这一知识点上,老师也应该设计一些练习,突破难点。
三角形的面积 5
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:理解并掌握三角形面积的计算公式。
教学难点:理解三角形面积的推导过程。
教法与学法:教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:三角形卡片、多媒体课件
教学过程:
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复习平行四边形面积的求法
师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
生:我用两个直角三角形拼成了一个平行四边形。
师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?
生:要用完全相同的三角形来拼。
师:你拼时怎么知道是两个完全相同的三角形呢?
生:把两个三角形重合就知道了。
师:对,要用两个完全相同的三角形来拼。
师:还有不同的拼法吗?
生:我用两个完全相同的锐角三角形拼成了一个平行四边形。
生:我用两个完全相同的钝角三角形也拼成了一个平行四边形。
(学生汇报并且交流拼法,明确用两个完全一样的三角形能拼成一个平行四边形。)
师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。
4、第二次操作实践
师:说的真好,刚才同学们把两个形状完全一样的三角形通过拼组,转化成了平行四边形,也就把三角形面积的计算和我们刚学过的平行四过形面积计算联系起来了,下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流)
放手让学生自己通过前面的拼摆操作,探索三角形与拼成的长方形,平行四边形或正方形之间的内在联系,能够使学生更好地理解三角形面积公式的推导过程。
师:谁来说说你是怎样推导的?
生汇报
师板书:三角形的面积=底×高÷2
师:你们的发现太棒了!下面请同学再仔细观察所拼成的平行四边形的`底与三角形的底,所拼成的平行四边形的高与三角形的高看看有什么发现?
师:我们把这种相等的关系叫等底等高。
师:那么三角形的底乘以三角形的高求出的是什么?
生:与三角形等底等高的平行四边形的面积。
师:为什么除以2呢?
生:因为三角形的面积是与它等底等高的平行四边形面积的一半,所以要除以2。
师:大家同意吗?无论什么样的三角形,它的面积都可以转化成平行四边形的面积来计算,所以我们得到三角形的面积公式=底×高÷2
师:谁能用字母表示三角形的面积公式
师板书s=ah÷2(生齐读)
三、运用公式,解决问题
(1)师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米)
师:(出示课件)它的高是33厘米,你能计算出它的面积吗?
在练习本上算一算
〔设计意图〕在解决实际问题中巩固新知,培养学生学数学、用数学的思想,感受数学的价值。
(2)我们经常见到类似的标志的标志牌(课件出示),你知道这个标志牌的面积吗?谁口算一下。
3×4÷2=6(平方分米)
2.5×4.8÷2=6(平方分米)
师:都是这样做的吗?为什么不用2.5分米?
如果这条底边是4.8分米(课件出示)还可以怎样列式。(2.5×4.8÷2)
师:通过这道题的解答,你明白了什么?
〔设计意图〕通过解决实际生活,提升学生思考能力,培养学生认真观察的能力。
(3)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
师:我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(课件)
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
(4)小精灵也给大家带来了问题,请大家看屏幕
师:下图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
学生打开书87页,在书中画一画
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
让学生通过思考、讨论、揭示“等底等高的三角形,它们的面积相等”这一规律。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式(课件演示)课下同学们可以动手试一试。
师:同学们,这节课你最大的收获是什么?
生:我学会了三角形的面积怎样计算。
生:我学会了用转化的方法推导三角形的面积计算公式。
师:下节课我们继续运用转化的思想探究梯形面积的计算方法。
通过反思和总结,能使学生建构的知识框架更加清晰、明了,使学生不仅掌握了知识,而且也掌握了学习方法。
三角形的面积 6
今天是教师节,孩子们的心思都乱了,都沉浸在过节的氛围中。早上的第一节,还是按预定的安排完成了《三角形的面积》教学。
我的主要思路先是复习,通过复习平行四边形的面积公式的推导过程提炼转化思想,在例4的处理上略施技巧,让学生自主构建想要把三角形变成我们学过的平行四边形,只是在为什么必须是两个完全一样的两个三角形,处理还是显得仓促,应该提供素材让孩子动手摆一摆,虽然我们提出两个面积一样的三角形能不能拼成一个平行四边形?有孩子提出面积相等,可能形状不同,此处也结合多媒体,估计基础差的同学可能理解不了。
在操作和填写表格的时候,指导还不充分,有的同学拼出平行四边形但是高不是整格子,不好确定,需要换一个角度来摆。在探讨和推理三角形的面积公式时,同学理解得很清晰,由于我的反复练说,孩子们对于三角形面积公式的理解很透彻,尤其是为什么要除以2有了深层次的理解。
在教学中,注意三角形和平行四边形的关系,这样,在完成练一练的.两题就特别顺畅,尤其是一些基础差的孩子也能很快解决出来。
昨天在备《三角形的面积》一课中,《小学数学教师》杂志中就有老师提出,也可以利用“剪拼”和“拼组”两种方式实现三角形到平行四边形的转化,本节课为了想一课时完成,所以我准备再上一课时,引导孩子们用“剪拼”的方式来探讨三角形的面积公式。
三角形的面积 7
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的'面积,解决实际问题。根据新课程理念的要求,教学重点应该是引导学生学会学习。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。我感觉:在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:s=ah÷2。从表面上看,学生动手操作了,实际上学生只是被老师牵着鼻子走。学生没有主动地思考,没有猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。
这样提供材料思维含量低,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。这样的操作是肤浅的,没有起到促进学生建构知识的作用。
三角形的面积 8
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:1.剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。2.拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。3.观察,拼成的平行四边形和三角形之间有怎样的关系?4.想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的同学拼成的'平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
三角形的面积 9
《数学课程标准》中指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,教师应该让学生在具体的操作活动中进行独立思考,发现问题、提出问题,并与同伴进行交流。
隔壁班的杜老师到我班借班上《三角形面积的计算》以后,我思考着这样一个问题:要不要再上这一节课?如果再上,要怎样上才好?才符合学生现有的认知水平?最后,我决定针对学生在计算时依然容易漏掉"除以2"的现象放手让学生探究,重点体验公式的由来。
这节课的教学目标一是让学生在推导三角形面积公式的活动过程中会用自己的语言表述三角形面积公式的推导过程。除了设定知识目标以外,更重要的是培养学生的能力,所以这节课除了让学生会计算三角形的面积外,还注重培养学生与他人交流、合作、学习的能力。让学生通过与他人的合作交流学会新的知识和本领。最后情感目标方面,让学生感受数学与我们的生活是紧密联系的。
我先让学生自主合作探究三角形的面积计算式,由学生预先准备几对三角形,探究三角形的面积计算公式。学生根据自己的理解,在杜老师的基础上很快地探究得出三角形的面积计算公式,小组中每个学生都是主角,可以发表自己的见解,使学生的个性得到发展。
接下来,我让学生按三角形的三种类别进行交流汇报。学生很快得出结论,无论是哪种三角形,面积的计算公式都是底乘以高除以2。教学到这里,学习任务是否就完成了?学生在前一课时的基础上学习这部分内容很容易,如果上到这里,岂不是原地踏步?这时,我抛出一个新问题:用一个三角形能不能也剪拼成一个平行四边形或长方形?学生体验到前半节课成功的快乐,带着浓厚的的兴趣投入到新的问题研究中。
后来,学生通过操作发现了:新剪拼成的平行四边形的底是原来三角形的.一半,高是原来的高,所以,新的平行四边形的面积是三角形的底的一半乘以高,即:S三角形=底÷2高。实验证明了,也可以S三角形=高÷2底。学生可高兴了,他们懂得了利用数字的特点来灵活地计算三角形的面积。对于中差生来说,掌握了这三个数量,至于这三个数放的位置可以灵活排放,计算起来更容易。
放手让学生自行探究三角形的面积公式这一点,我做得非常大胆,体现了新课程中关于让学生自主学习的理念。但我发现在某些方面仍存在“牵着学生鼻子走”,如学生合作和思考的时间不足,教师讲的过多,提示(暗示)得过多;学生练习时间不够,形式比较少等。在实际教学中,发现学生在推导过程中遇到困难。
三角形的面积 10
“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。
在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。
充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。
本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。
纵观这个教学过程,初步体现了提出问题---大胆猜测---反复验证---总结规律---灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的'方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展.
三角形的面积 11
在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的'知识结构中去。
具体做法如下:
1、 这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,也就没有了学生的创新和实践。因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。
3、实现合作互动:这节课一系列活动的设计给了学生充足的用眼看、用耳听、用嘴说、用脑想的时间和空间,让学生尽情地表现、发展自己,充分体现了教师指导者、合作者的作用。我提供了多次学生交流的机会,学生们可通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
不足之处:
例如:在第二次操作活动中,参与面不够广,部分学生手中拿着两个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
三角形的面积 12
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的'发现者、创造者,培养学生自我探究和实践能力。
在推导三角形面积计算公式时,通过小组合作,让学生用两个完全一样的三角形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:三角形与你拼成的平行四边形有什么联系?引导学生发现每个三角形的面积是平行四边形的一半。通过实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”, 在活动中发展,学得主动、扎实,思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
在本课教学中,也存在一些不足之处,个别学生没有准备学具,不能动手操作,个别学困生手中拿着三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。
三角形的面积 13
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的'面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形的面积 14
《三角形的面积》是一节传统的教学内容。这部分内容是在学习了长方形面积、平行四边形面积公式的基础上进行教学的。主要是引导学生通过三角形形面积公式的推导去理解和掌握三角形面积计算公式。根据新课程新理念的要求教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
在整个教学过程中,我做到了以下几点:
一、猜测入手,激发学习兴趣
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的.进展,从而达到事半功倍的教学效果。
二、小组结合动手操作
猜测后,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
三、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。如:求绿地面积,求
红领巾面积,求安全警示牌面积,最后又回到求公园绿地面积,每个环节都是在解决生活中的实际问题,使学生学习不但互动有趣,而且富有生活气息。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经作到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此,本课的总结中我应该点出:这样的思考方法在数学上叫做转化。当我们遇到一个新问题时,就可以动脑筋把它转化成我们以前学过的旧知识。这样就起到了“画龙点睛”的作用,可惜我疏忽了。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。
今后我要认真学习新的课程理念,认真钻研教材,研究学生,设计适合学生自身特点的教学方法,以学生为主体,充分调动学生学习的主动性和积极性,从而培养学生的创造能力。努力提高自身的业务能力。
三角形的面积 15
我班学生总体来说思维活跃、个性较强,我针对这一实际,对教学进行了这样的安排:在揭示课题后,我让学生自己推导出三角形的面积公式,让学生以小组为单位进行了两次操作:第一次,把三角形拼成以前学过的会计算面积的图形,并从拼摆中使学生明白只有两个完全一样的三角形才能拼成平行四边形;第二次,是让学生通过观察拼好的图形,自己推导出三角形和所拼的图形有什么关系,从而得出三角形的面积公式。最后让学生把得出的三角形面积公式应用到练习中。
本节课中,我觉得比较成功的地方有以下几点:
一、渗透“转化”的思想“转化”是数学学习和研究的重要思想方法之一。在课的开始,学生把一个长方形的花坛平均分成了两个直角三角形,借助长方形的面积算出一个直角三角形的面积。学生初步感到直角三角形和长方形有一定的联系。课中,通过两次的实践操作,学生更加明白了其实三角形可以转化成已学过的图形。在课的结尾,我再适时进行了总结:当我们遇到一个新问题时就可以动脑筋把它转化成我们以前学过的就知识。这样,“转化”思想贯穿于课的始终。
二、注重学生间的合作与交流学生学会合作与交流有利于形成良好的人际关系,促进其人格的健全发展。在这节课中,我注重学生间的合作与交流:以小组为单位让学生对三角形进行拼摆,再让他们上台展示自己的作品,并让其他小组的同学对黑板上的图形做及时的补充;在小组合作推导三角形的面积公式时,我也尽量让学生对其他各组的推导过程进行补充或提出异议,让学生在交流中学到了知识,在交流中看到了可以用许多方法解决同一个问题,但许多问题在有限的时间内不可能靠一个人的力量完成,必须靠大家的力量,培养了彼此间的合作与协作精神,同时深切地感受到集体合作的重要性。
三、重视数学的应用性学以致用是数学教学的一个基本原则。课的开始,我让学生在欣赏美丽的西湖的同时,解决园林工人遇到的问题:把一块长方形花坛平均分成两半,你认为应该怎样分开呢?如果平均分成了两个直角三角形,那每个三角形的面积又是多少呢?课中,我又让学生求红领巾的面积、算出标志牌的.大小。这些都让学生认识到了数学在生活中是无处不在的,体会到了数学的应用性。
当然,本节课也存在一些不足,如:
一、推导三角形面积的方式太过单一在推导三角形的面积时,我只让学生进行了拼摆,其实对于部分学生来说,他完全有可能想出如割补、折叠的方法。我考虑到课堂时间的有限,自己驾驭课堂的能力也不强,就没有设计了这样的环节二、课堂设计不够开放整节课下来,学生的回答、操作都在我的预想中进行。仔细想想,这节课其实是有很多地方能够让学生冒出思维的火花,让学生有创造性的发现的,而我却把学生框在了自己设计的教案中。因此,这节课完全可以设计得更开放些,让学生课前先寻找需要实验的素材,自行确定其研究方案,真正实现根据学生的需求进行教学。
【三角形的面积 】相关文章:
《三角形的面积》 06-17
三角形的面积 09-19
数学《三角形的面积》 05-17
三角形面积的计算 11-26
《三角形面积的计算》 09-02
《三角形的面积计算》 09-03
三角形的面积 (15篇)11-06
三角形的面积 15篇09-19
数学《三角形的面积》 11篇09-16