《两位数乘两位数的乘法》
作为一位刚到岗的人民教师,我们都希望有一流的课堂教学能力,借助 我们可以拓展自己的教学方式,优秀的 都具备一些什么特点呢?以下是小编帮大家整理的《两位数乘两位数的乘法》 ,仅供参考,大家一起来看看吧。
《两位数乘两位数的乘法》 1
两位数乘两位数的笔算是在学生已经能熟练掌握表内乘法,能进行一位数乘多位数的笔算乘法,会口算、笔算万以内的数的加减法的基础上进行教学的。学好本课将为学生继续两位数乘三位数的计算奠定良好的基础。为了更有效的突出重点,突破难点,教学中,我设计了以下活动:
一、复习旧知,以旧引新
考虑到数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,教学内容必须联系实际,重视学生的体验与感悟。这节课开始,我通过现实数学情境的创设,采取忆旧引新的方法,从复习两位数乘一位数笔算,两位数乘整十数的口算,再引出两位数乘两位的笔算。我充分依据学生原有的知识和经验,复习旧知来为学习新知打下了扎实的基础。
二、合作探究,理解算理
教学过程中让学生自己自主学习、合作探究笔算乘法的计算方法,经历探究的全过程。重视学生已有的'知识基础,放手让学生运用知识迁移自主探究,通过 “试着算一算”、“说一说你是怎么想的” 让学生通过独立思考解决问题,说清楚自己的思路。在教师的引导下,学生不只是“知其然”,更“知其所以然”。这样的设计,激发学生以积极的心态,调动原有的知识和经验尝试解决新问题,在学生自身的再创造活动中建构数学知识。
三、闯关游戏,巩固新知
考虑到学生在40分钟学习中难以始终集中注意力,我在练习中设计了数学闯关游戏,激发学生的学习兴趣。
1、基础练习的第一关:初试锋芒
把相乘的结果放在正确的位置,意在考察学生正确书写两次乘积的书写位置,不仅让学生知其然,更让他们知其所以然。
2、对比练习的第二关:火眼金睛
在多年的教学实践中,我发现每一届学生在学习同一教学内容时,出现的错误都惊人的相似,因此我搜集了一些易错类型的题目,设计了啄木鸟治病这一环节,对学生易错算出进行对比辨析,使学生思维更清晰,更深入。
3、独立练习的第三关:技能比拼
通过尝试训练之后,学生已经形成了一定的能力,笔算也稍微熟练了一些,这时我放手让学生独立完成几道笔算练习,进一步巩固新知,形成技能。
4、解决问题———第四关:学以致用。
我创设“学校为班级做窗帘”这一情境,带领学生走进生活,探索现实中的数学,培养他们“用数学”的意识和能力,感悟到数学与我们的生活息息相关,数学就在我们身边。练习内容紧贴生活,训练由浅入深,既巩固了知识,又培养了能力,突出在生活应用中学数学。
通过这节课的教学使我认识到每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才能在脑海中生根发芽。也只有这样引导学生有效学习,才能有利于学习到更有价值的数学。纵观全课,还有许多需要认真思考和改进的地方,如提升自身语言素养、激励学生,关注学生个体差异、使每个学生都有学习成功的体验,关注课堂生成等这将成为我今后努力的方向。
《两位数乘两位数的乘法》 2
4月8日,只是一个很平常的日子,但对于我而言却是意义非凡的。一堂普普通通的课,却给予了我们太多太多的“教育”和思索。
昨天下班前夕,被告知明天数学教研员姜老师要来听课。急急忙忙弄出了一份教案,又根据教案做了一份简单的PPT课件。晚上回家之后,只是简单地将教学思路理了一遍,随后的时间便是对着教案发呆了,并非是自己胸有成竹,而实在是自己看不进去了。今天上午进行了一次试教,试教之后,前辈们给予了我许多的帮助。
我是以围棋棋盘图导入新课的,让孩子们讲讲从棋盘上你发现了哪些数学信息,进而引出了“棋盘上一共有多少个交叉点”,从而列出式子“19×19”。在试教时,我的目的只是让孩子列出式子。而在前辈们的讲评中却发现:围棋棋盘在这节课上是可以大做文章的。比如在孩子列出“20×19=380”时,可以再添加一条在原来的棋盘上,之后的“380—19=361”时又可将添加上去的删除,这样图形与算式相结合的方式可以让孩子理解起来更为简单,也让题目变得更为形象。此外在试教时,我对学生似乎扶得过牢了,课堂的提问也似乎过于简单,在说算理时,我也只是选取个别孩子,并未完全顾及所有的孩子。还有一些细节方面的问题,有待在课堂中加强。
下午的课堂似乎比上午是有进步的,上午遇到的问题我也都能很好的解决。比如“19×19”不再只是一个简单的式子,而是让孩子们结合围棋棋盘来说明原因;而在说笔算过程时从个人说到同桌互说,再到最后的全班齐说。
第二次之后,新的问题也出现了。
1、自己的数学素养有限,对于课堂的评价和激励的语言太过于贫乏,课堂一直处于平淡中。在以后的课堂中尽量丰富自己的语言,以此达到活跃课堂气氛的目的。
2、对于课堂中的反馈还有待加强,反馈策略是一门深奥的学问。
3、本堂课中的练习安排并不是特别合理,缺少了一些思维的拓展。我可以在最后时利用一道难度稍大的.题目,将孩子们的思维拔高,让他们将所学的知识运用于解决实际问题。
4、在试教时,我并未用到估算,而在正式上课时我将估算运用其中。而我也只是简单的运用估算,只是为了“估算而估算”。在之后的讲评中,姜老师的话让我知道了估算的用处远没有那么小。通过估算可以让孩子们的思维更为活跃,让他们渐渐知道自己的估算结果是可以一步步靠近准确值的。
一次匆忙的课堂,又让自己成长了不少。
《两位数乘两位数的乘法》 3
教学目标:
1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化;
2、感受“借助旧知识,解决新问题”的策略意识。
3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。
教学重点:理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。
教学难点:理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。
教学过程预设:
一 、创设情境,提出问题
听说小朋友这几天在学乘法,先来考考你们
1、先后出示12×3 12×30
师:12×3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的
乘法意义吗?(乘法意义)
师:那12×30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?
2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。
3、师:李老师来自镇小,在算我们学校总人数的时候遇到了这样一个问题
临城小学平均每班有31人,那全校12个班有几人?
(1)读题
(2)怎样列式?31×12
(3)这是几位数乘几位数?(两位数乘两位数)它的乘法意义你知道吗?那么谁能说说,31×12它的结果大约是多少?你是怎么估计的
(4)我知道了镇小大概的人数,那到底准确的有多少人呢?大家还没告诉老师呀,要计算这道题,我们以前学过吗?遇到新问题了怎么办?能不能把它变成我们已经学过的知识?
二、探索尝试,寻找方法
1、自己试着把这题变成我们学过的旧知识,在自己的练习本上试试。
2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)
3、同桌交流整理。
师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。
3、全班汇报,汇总解答策略。
师:我发现刚才在讨论的时候大家学习习惯特别好,学习效果一定很好。谁想出了一种方法?有两种的吗?还有没有更多的?(把学生的方法写到黑板上来,并请学生来介绍)这是谁写的,请你来说说?
可能会出现:
第一种方法:31×10=310 31×2=62 310+62=372
师:为什么这么列,这是什么意思?(31×12没学过,但我们可以转化成我们学过的知识,31×12表示12个31相加,可以把它看成10个31与2个31相加)你们明白了?
或出现12×30=360 12×1=12 360+12=372
师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)
师:为什么要拆呀?
师:看来大家很有自己的想法,想到把新知识转化成旧知识来解决。
第二种方法:31×4×3 31×2×6
那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。
[1][2][3]下一页
第三种方法:
1、他是用什么方法做的?用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)
若学生没出现竖式的形式
师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)
2、 62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数
3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系
起来)
31
× 12
———
62
310
372
4、若学生还有其他不同的算式,
31
× 2
———
62
31
× 10
310
62
+ 310
372
(1) 你为什么这么做?看来大家很有自己的想法。
(2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。
4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)
5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。
6、现在我们能知道镇小有多少学生吗?(板书完整横式)观察竖式,填一填2个班有( )人 10个班有( )人 12个班有( )人
23
× 13
———
69
230
299
7、尝试用竖式练习23×13。(学生再次尝试计算)有困难的同学可以模仿上面一题也可以求助于你的同桌
(1)谁愿意把你的解法展示给大家看(实物投影)并边介绍
你的想法
(2)你能看明白这个算式的每一步是怎么来的,表示什么意
思吗?同桌互相说一说
有什么地方不懂的'?想问大家的。(实物投影)
8、揭示课题
师:这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)今天我们用到了哪些旧知识?现在你能说说应该怎样笔算两位数乘两位数吗?
师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。
23
× 13
———
69
41
× 21 230
299
9、理解个位“0”不写的意思
31
× 12
———
62
310
372
1)观察这三个竖式,跟以前两位数乘一位数的笔算有什么地方不同?为什么会出现“两层楼”的情况?(因为乘了两次,第一次是第二个因数的个位去乘第一个因数,第二次是第二个因数的十位去乘第一个因数)
(2)除了要乘两次外,还有什么共同的地方吗?(第二次乘得的积的末尾都是“0”)为什么末尾都有“0”?那这个“0”不写可以吗?如果横式中不写可以吗?为什么竖式中可以而横式中却不可以?(竖式中有数位)“0”省略会不会影响计算结果?但要注意什么?因此我们通常把个位的 “0”省略不写。
(3)其实个位不写“0”还有一个更大的作用,(观察板书)只要算第二个因数十位的时候,跟十位对齐就行了,这样两位数乘整十数就变成了两位数乘一位数。但有一点算得的积必须与哪位对齐?(十位)
(4)省略“0”以后要注意什么?
三、巩固方法,推广应用
1、现在我们用这种形式笔算完成34×12 41×21
(1)做之前有什么要提醒自己和大家的吗?
(2)(实物投影)学生笔算并汇报
(3)现在同桌互相说说两位数乘两位数的笔算应该怎么算?
2、师:在我们生活中用没有用到过“两位数乘两位数”的例子?(一学生举例可请其他学生笔算完成)
3、师:老师也来举个例子并笔算。出示:
一套12本,每本24元。一共要付多少元?
4、帮老师解决一个问题
出示:
⑴61个小朋友去看电影,买票一共需要多少钱? (学生认为还少了每张票的价钱)
师:电影院售票窗口有这样一个告示 :成人票每张50元 儿童票每张24元
⑵学生笔算
怎样列式?为什么要与24相乘而不是50?
⑶多媒体对照
61
× 24
———
244
122
1464
⑷ 1张票要( )元 60张票要( )元 61张票要( )元
5、 11×11= 12×11= 13×11=
14×11= 15×11= 16×11=
师:要掌握两位数乘两位数的笔算,必须进行大量练习。现在我报题,你们笔算。
(教师随时报得数)我已经好了,你们呢?
师:很奇怪是吧,是不是老师把这些得数全背出来了?其实这里就有数学秘密在,有兴趣的话下课可以去找找
机动:出示图片《脑筋急转弯》每本16元 《小博士观察手册》每本24元
三(2)班小朋友准备700元钱,想每人买一本相同的书,应该买哪种书?
四、课堂小结
师:今天这节数学课你有什么收获?你是怎样学习的?
师:今天我很高兴,感觉真好!这种感觉是大家给我的,所以我要特别谢谢你们,以后有机会咱们再在一起上课,好吗?
反思:
首先,我想谈谈对教材的理解。这部分的学习内容是在学习了笔算多位数乘一位数的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理。两位数乘两位数的笔算是本单元的教学重点。因为,学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,为了突破重点和难点,分两个层次进行。第一层次主要是为解决学生对两位数乘两位数算理的理解,而理解算理主要是以学生对乘法算式意义的理解为突破口,从引入部分的口算、学生用不同方法对例题的尝试及学生对不同方法的理解,包括两位数乘两位数笔算的过程都仅仅围绕乘法的意义来展开;第二层次主要是为解决十位部分积的对位问题,这也是本节课的一个难点,主要是能解决这几个问题,第二个部分积的末尾“0”能不能省?会不会影响计算结果?省“0”后要注意什么?
由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的由于这是一堂计算课,使学生从不同的角度加深对法则及算理的认识,激发学习兴趣,提高计算能力,并培养学生认真计算、书写工整的良好学习习惯。练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。只有这样才能真正实现练习的优化。因此在探索检验过程中我一共安排了4道题:31×12 23×13 41×21 34×12 前两题主要是为理解算理服务的,后两题是为了巩固部分积的对位问题。计算是枯燥的,但也是有用的,引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识,从而从“有用性”的外在角度刺激学生的主观能动性,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法,使今后学生面对没出现过的题目、类型或其他生活中的问题,不再惊慌不已、束手无措也是我本节课要传达给学生的:原来新问题也不可怕,也只不过是旧知识的重新建构。
在教学的过程中我也发现了自己的许多不足,特别是作为一名教师课堂智慧的缺少,如课堂提问的策略问题,面对学生的突发问题,不知道怎样去引导。在今天部分积“0”问题的处理上就花费了大量时间,并且出现了很多重复教学的情况。我想了有了失败,才会去找原因,才会去思索,才会不断去实践,这样在实践反思中不段磨练自己,锻炼自己。
《两位数乘两位数的乘法》 4
本课时是在学生已经熟练掌握了表内乘法,能够正确口算100以内加、减法的基础上进行教学的。这是一堂计算教学课,在教学过程中,我通过口算进行导入,最后出示一道进位口算,以此设疑。学生通过用以前学过的口算的方法说一说计算过程,再通过摆小棒的方式一起来探究进位的过程,因为之前已经学习过加减法竖式的书写,所以直接放手让学生自己尝试将竖式写到演草本上。在此环节中,本来预设学生能够通过口算的方法写出竖式的基本形式,但是可能是预习的原因,学生都直接写出了乘法竖式的简写格式。于是我顺势请学生将计算过程直接说出,我做适当的引导,让学生说出简练的计算过程,然后将板书写在黑板上,重点讲述进位的由来和写法,再次强调写竖式要注意的事项和竖式格式的要求。练习部分,我注意到由易到难,由浅入深,先由基础练习开始,完成基本的三道练习,学生和老师共同总结两位数乘一位数的笔算乘法的计算方法,接下来逐步提升难度,进行改错练习,更高层次的练习,最后出示拓展练习,做到分层练习。
不足之处:在使用小棒探究进位时,可以让学生都带小棒来,增加每个学生的参与度,也加深对进位的认识。计算课比较枯燥,为调动学生的.积极性,可以加入一些游戏性质的环节,提高学生的学习兴趣。在处理基础练习时,速度可以加快一些,多加入一些其他类型的练习,计算课练习的多样化,能更好的帮助学生充分理解。
《两位数乘两位数的乘法》 5
课堂上,我通过有趣的教学情境引导学生主动探索、研究算理与计算方法,反复向孩子们强调在乘的时候要记得“从个位起,用一位数依次乘多位数的每一位数;哪一位上乘得得数满几十,就向前一位进几”的计算要求,但是在练习中部分学生仍然出现了下面的情况:
1.漏进位。在计算时孩子们常会出现贪快不进位的情况,一旦漏掉进位,在下一个数位的`计算上就容易遗忘出错。
2.忘记了要“依次乘多位数的每一位数”在计算乘加混合式题的口算时,加法也“依次加多位数的每一位数”了。
在计算一位数乘多位数时,必须严格按照计算顺序一步一步去乘,碰到有进位时,要先对准前一位下面进几,千万不要漏掉把进位的数与乘积相加。为了减少计算上的错误,需要多练习乘加混合式题的口算(如:68+7等),这类口算的熟练可以大大提高一位数乘多位数的正确率。在教学中还要通过各种形式适时地多补充些相关练习,以强化学生计算技能,提高计算的正确性。
以上这些如果只是讲给是不行的,我通过操作学具让学生加深对算式算理的理解,能够运用所学知识解决简单的实际问题,能对问题做出正确分析,对同一类题目做出总结和概括,提高解决问题的能力。
在操作学习过程中,也培养了学生的合作意识,口头语言表达能力,课堂上我注重张扬学生的个性,鼓励学生以自己的思考方式和习惯解决问题。个别学生的学习情绪往往是外热而内冷。我想今后的教学要注意课堂上让所有的学生都活跃起来。
【《两位数乘两位数的乘法》 】相关文章:
《两位数乘两位数笔算乘法》 11-21
两位数乘两位数笔算乘法 11-22
《两位数乘两位数》 10-11
两位数乘两位数估算 11-15
《两位数乘两位数的笔算》 11-26
两位数乘两位数不进位笔算乘法说课稿10-17
《笔算两位数进位乘法》的 08-14
《三位数乘两位数笔算乘法》 03-28
两位数加两位数 03-03