《三角形》
身为一名优秀的人民教师,教学是重要的工作之一,借助 我们可以拓展自己的教学方式,那么优秀的 是什么样的呢?以下是小编为大家收集的《三角形》 ,仅供参考,大家一起来看看吧。
《三角形》 1
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的`灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
《三角形》 2
本节课的教学重点是让学生掌握三角形内角和的证明与应用,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯。
教学中,我设计先让学生动手操作以便使学生对三角形内角和有感性认识,然后再根据拼图说出结论成立的理由,由浅人深,循序渐进,学生易接受。
充分体现自主学习、合作交流的新课程理念。无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用。所选的例题更注重数学中的“一题多解”的渗透,扩展了学生的思维,树立了学生学习的信心,培养了学生的自主探究能力。
当然安排“课堂小结”这一环节,注重学生的交流互动,旨在让学生不断积累数学活动经验,让学生在此环节获得系统的`知识,也便于学生自己查漏补缺,让学生在归纳交流中提高。
总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。如果我能在前面几个教学环节抓住时间,让学生在后几环节充分展现自我,我想这样更有利于学生的个性发展。
多媒体辅助手段的运用丰富学生的学习资料,生动活泼地展示所学内容,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究能力。
《三角形》 3
根据学生的认知能力本节课的教学过程设计:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念,其次,通过阅读法让学生找出全等形和全等三角形的.概念,并且通过让学生找出生活种的全等图形让学生体会数学来源于生活,生活中存在数学美。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
通过这节课的学习,学生能找出图形中的全等图形,但是再用符号标记全等三角形时对应点还是有部分学生没有写对,对这些学生还要多作指导。
这节课改变了传统的“传递——接受”式模式,尝试采用“问题——探究”型的教学模式,教学过程注重学习方法,注重思维方法,注重探索方法,让学生尽可能地经历合作和交流,感受不同的思维方式,思维过程,通过互动体验认和思想,培养与他人合作的意识和态度。产生学的兴趣和自信心。让学生在互动的过程中学的知识与经验,思想与方法,体现了“方法比知识更重要”这一新的教学价值观
《三角形》 4
本节课主要通过学生的小组活动、自主探索,概括出三角形内外角的三条性质;并通过交流探讨,说理论证,实践检验,加深认识三角形内外角的三条性质。在课堂上充分体现了学生的主体性地位和学生学习的规律,及发现知识—探索知识—掌握知识—运用知识。上完这节课后,感觉到本节课还有不少地方设计得不好。结合实际,我的反思如下:
1.成功之处:
整体来说,本堂课的教学围绕三角形的内外角性质发现及应用展开教学,通过学生小组活动,发现结论,并结合所学进行说理论证等使本节课的重点得到了突出,难点得到了突破;并且对学生学习中的情况进行了点评和分析,并对有较多学生存在的`问题作出了反馈;教育了学生要善用数学的眼光看待生活,因此整体设计是成功的。
2.不足之处及改进措施:
以下是不足之处,我进行了反思,并提出了一些改进措施,希望下次上课能有所借鉴:
在用在活动1的时间偏多。 由于七年级的知识结构还不完整,所以引导学生从实例说明到说理论证的数学学习:“量”,“拼”到“等量关系”,“作辅助线”。故花费了一些的时间,不过我认为有必要让学生知道数学证明是严谨的推理过程,而不仅仅是“看到的”。
改进措施:在活动过程中,适时引导,方法很多,不必一一讲解,只要学生能用一种数理方法验证就可以,这样可以为后续活动提供更多时间。
在实际教学中为了体现学生学习的主体性,和教师教学的主导性,花费了很多的精力编拟了学生自主学习卷,但是如何用好学习卷,如何处理学生探索过程中的引导和讲解也是一门不浅的学问,还需要在实际教学中不断地反思才能不断地进步。
《三角形》 5
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的.三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。
《三角形》 6
探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。
一、“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。
“是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。
再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的大小如何变化,它的内角和是不变的。通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。同学们通过自主实践、合作探究完成了本节课的教学任务。
二、练习设计,由易到难。
在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
三、发挥多媒体的教学辅助作用
在用“折”的方法验证三角形内角和是180度时,虽然发言的.学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。准确地找到三角形的中位线,使折纸的关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。
四、存在的不足
在教学中只是让学生体验到各种类型的三角形和大小不同的三角形基本图形的内角和等于180度,在一些练习中出现了求变化得到的三形内角和时出现了认知的盲点,如,如两个完全一样的小三角形拼成一个大三形角形内角和等于多少?还有部分学生出现等于360度的现象,这些如能在课堂上让学生练习,学生对于三内角形内角和的性质的认识会更深入。
《三角形》 7
操作题、开放式问题引入课堂,学生在探讨的过程中往往会生成一些教学片段,因此时间不好把握,导致拖堂或完不成教学任务,到底如何看待这种现象?我在课堂上(或听其他教师的'课时)常常碰到因为探究而不能完成预设教学内容的情况,花的时间比预计的多,因此导致拖堂,感到预设与生成之间的矛盾不知如何解决,盼各位老师给予指导。
《三角形》 8
《三角形三边关系》教学内容:“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。
特级教师吴正宪提出,要让学生享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合学生的美味?教学三角形三边关系,以前的我选择是给3根小棒让学生来探究。而这一次我选择了给他们一张普普通通的纸条,需要学生忽视其宽度,重视其长度,把它“想成”只有长度的线段。这就有了“数学化”的味道。变"学数学"为"做数学"。让学生在自主探索中总结得到三角形的三边关系。让学生能够接受学习内容,提高学习兴趣。使学生在课堂上乐于学数学、做数学、用数学。除此之外我还采用了创设实验情境——动手操作——合作探究——揭示规律——画图验证这种探究方法来完成本节课,目的是让学生体会理论和实践相结合才是严密的论证方法。
课堂及时捕捉学生思维的成果。当学生用纸条摆出结果后,我用手机照相功能把学生的作品保存下来,投放到课件之中,学生的学习兴趣一下高涨起来,把他们不同的成果进行展示,并且进行比较分析,得到了良好的效果。
巧设练习,促进思维的发展,体验数学的'意义和价值。在练习中设计了几组线段,让学生判断能否围成三角形,分析这几组数据,得出只要比较较短的两条线段之和是否大于第三条边就可以判断能否围成三角形了。并根据这一发现解决四组线段能否围成三角形的问题。这一过程使学生巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较小两条线段之和大于第三条线段,便可构成三角形。
《三角形》 9
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的.三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形》 10
认识三角形是借助一年级已经初步认识过三角形和在四年级认识角、线段等基础上进行教学的。故我首先让他们找生活中的图形并紧接着动手做三角形,从而感知三角形的特征,使学生明白三角形是由三条线段围成的图形,有三条边、三个角、三个顶点。在具体的教学中,生与生之间、师生之间的交往互动还算顺利。
在第二阶段,探索三角形的三条边之间的重要关系过程中,由于是再现课,学生的积极性不是很高,因为他们已经知道了结果,再加上我对这种情况的'处理经验有限,所以在突破重难点时不够深刻。
今天这节课,让我更加深刻地认识到一堂真正成功的数学课堂,过程才是最重要的。数学教学内容是数学基础知识和数学思想方法的有机结合,在今天的数学课上,加上是再现课的原因,孩子一味地利用“三角形两边之和大于第三边”来回答问题,而对于这句话的理解却很模糊,甚至出现错误,这说明他们对是如何得出这句结论的过程并没有深刻理解,这也反映了学生往往只注意对数学知识的学习和运用,而忽视了连结这些知识的观点及由此产生的解决问题的方法与策略。
只注重结果而不注重数学学习过程的这种学习模式,不是一时半会养成的,这是孩子在常年的学习中形成的一种错误学习模式。我现在带的是一年级数学,在遇到解决实际问题的题目时,很多孩子上来就列算式,只要看到数字,要么就加要么就减,这是一种很危险的信号,如果这种学习持续下去,最终的结果就是孩子只会“做”题目,不会论述、思考、研究问题。
因此我希望自己在将来的教学中更加注重在数学课堂中渗透数学思想方法的教育,让学生在学到数学知识的同时也学到数学思想方法,在以后的生活,工作中都可以随时随地用它们去解决问题,在培养智力的同时也培养了孩子观察、分析、综合概括、语言组织表达等能力,这也将更促进我们素质教育的开展。
《三角形》 11
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的'时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话 ,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!
杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!
以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
《三角形》 12
在三角形的特性这节课里,我把重点放在了对定义的理解:例如三角形的定义中的“围成”,高的定义中“顶点”“对边”“垂线”,“线段”。首先我是让学生自学了课本的内容,然后出了一些判断题,让学生判断哪些是三角形的高的正确画法,然后再让学生说明在高的定义中关键词,你是如何理解的。
在三角形三边关系这节课里,我是让学生通过自己动手操作,摆纸条或木棍,初步感知所要学的知识,然后提问1:为什么4,5,9和3,6,10两组小棍不能摆成三角形,通过学生的讨论得出三角形的三边关系:任意两边的和大于第三边。提问2:如果去掉“任意”两个字行吗?把结论的讨论引向深入。学生得出去掉这两个字不行,判断能否组成一个三角形需要计算三次。加深了学生对定义的理解。例如10+3>6,但这三条线段就不能组成三角形。提问3:我想“偷懒”,最少计算几次就可以判断出来,把对定理的理解引向深入,学生通过讨论得出:只要最短的两条边的边长和大于第三边,就可以构成三角形。提问4:除了加法以外,还有没有用其他的方法能判断出三条线段能否组成三角形,让我意外的是学生自己得出了:用最长的减最短的边的差小于第三边就可以,在按角分类的课里,我的设计是让学生自学,然后判断下面的哪些图形是什么样的三角形,并说明自己的理由,初步感知定义。然后设计了一个题:出示一张只画了一个锐角的图片,问:只给一个锐角,你能判断出它是什么三角形吗?有的说能,有的说不能。然后让学生自己画,最后得出结论,一个锐角不能判断出它是什么三角形。接着问:如果是两个锐角呢?(也不能)如果是三个锐角呢?(一定行)如果是一个直角或一个钝角你能判断吗?(能)最后提问:一个三角形中至少有几个锐角,最多有几个直角,几个钝角?这样学生就不断加深了对角的分类的理解,在按边分类的教学设计中,学生在质疑解难,说明自己的发现中,所表现出的让人惊叹不已。举几个例子:学生1说:我发现了等边三角形中的三个角相等。学生2:我还发现了他们每个角都相等,都是60度。很显然这是两个不同层次的发现,但说明同学们都在动脑思考。学生3:我发现了相等的边所对的角相等。学生4:我也发现了相等的角所对的边是相等的。然后我顺势引导出:等边对等角,等角对等边当然啦,还有同学发现了其他。
反思:从整体上说,这几节课的课堂效果还可以,学生的参与度,参与的热情都很高。连班上最不爱听讲的陈赵宜都主动举手回答问题,作业最慢的张晨琳,在前十名就完成了作业,正确率还算可以,这在以前是不敢想的。通过这几节课我在想,究竟如何让学生喜欢上自己的课,怎样才能提高课堂的效率。
1、几何课要让学生去动手操作,而不是用耳朵去听,也就是给学生留有足够的自主探索的空间与时间。只有学生自己主动去探索、去实验、去发现,才能调动学生的学习的积极性,这样学生才会真正理解所学的知识。
2、对于概念的教学,应该先让学生自学,初步的感知概念,然后教师在设计相对应的判断题,抓住关键字词帮助学生来理解定义。
3、加强学生的质疑解难环节,这样也许学生会提出很多有价值的`问题,也许有的会超出你的想象的问题。同时也培养了学生的问题意识,为学生的自学打下好的基础。
4、总之一点,教学设计应该以学生为中心,从学生的角度去看问题,要留给学生足够的时间与空间。并让学生自由的讨论,让学生提出所有的疑难问题,真正的为学生营造一个我的课堂我作主的氛围。只有这样学生才会用心的去学,用心的会探究,用心的去感悟。
当然啦,每堂课下来,静静的反思,总还有一些不周全的地方,我也正在努力的想解决问题的办法。可是不知道为什么?越想好像需要解决的问题越来越多。因此我给自己定下了一条,不断的反思,不断的改进,相信自己就一定会更好。
《三角形》 13
教师是在不断地总结教学经验和 中成长的,下面是我对这一节课的 :
一、 教材选择
“全等三角形、”是学习平面图形关系的引言课,
关于全等三角形的 。内容涉及的知识点不多,知识的切入点比较低。而人教版将其建立在已学内容“图形的变化”基础上,加强与前面的知识点的联系。
八年级学生有一定的自学、探索能力,求知欲强。借助于学案的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。
二、教法和学法
让学生通过折叠、作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。
三、教学过程设计
首先,本节课我本创设情境,以学生为主,突出重点的意图,结合学案使之得到充分的诠释。我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题,总结出概念。我通过具体练习让学生总结,并带领学生寻找快速寻找对应的方法,练习的'设计采用由易到难的手法,符合学生的认知规律,一气呵成,突破了本节课的重点和难点。真正做到以生为本,抓住课堂45分钟,突出效率教学。在B组练习中,我让学生尝试使用数学推理的格式,使学生熟悉这种推理方法。
其次,我在结尾总结全等三角形时让学生在生活中寻找实例,体现了数学与生活的联系,培养数学兴趣。
再次从教学流程来说:情境创设———自学概念与特征———练习与小结———变式练习 ———应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的常见图形练习,也为全等图形的变换奠定了基础。再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一鼓作气,突破了本节课的重点和难点。
四、本节课的需要注意的几个问题
1、要更加充分地利用已有资源调动学生的积极性。我在设计中让学生自己看书得到全等的特征,没有调动学生,让他们自己去发现少。
2、针对不同层面的学生,注重学生的差异。学生的层次不同,本学案对基础较好的学生来说有吃不饱的感觉,应增加拓展提高练习,来满足这些学生的需求。
《三角形》 14
在本学期的家长开放日活动中,我执教了《三角形的特性》一课,在准备这节课是我也是付出了很大的精力,在教学设计上下了一番功夫,精心设计探究活动,引导学生自主探究,努力完善学习方式,使学生全身心地投入到活动中,在活动中产生了比较深刻的体验。课后我通过和听课老师和家长的课后交流,他们认为教学效果还是不错的。
一、努力之处
1.歌曲和视频导入,激发兴趣。
我精心收集了不少有关《三角形》内容的歌曲,最终通过筛选我加入了《三角形的故事》这首歌曲,它不仅歌词精彩,画面生动而且符合数学的知识性,学生根据音乐的内容很自然地猜出课堂要研究的内容。同时三角形视频的加入让学生感受到三角形在我们生活中无处不在,它和长方形、正方形、圆形等其它图形一起装点着美丽的世界,学生兴趣盎然地走进三角形的研究。
2.在活动中体验,研究特性。
布鲁纳说:“探索是数学的生命线。”没有探索便没有数学的发展。在教学中我设计了许多操作探究活动,使全体学生都能参与到探究新知的过程,努力引导他们自己动手、动口、动脑,主动思考问题,提高能力,积累经验。
活动一:动手制作三角形。
小组准备了制作三角形的材料,有:三角板、彩色卡纸、剪刀、小棒(或吸管)、细绳等,鼓励他们合作动手做三角形,学生进行了许多精彩巧妙的方法展示,比如:a.用纸折或剪;b.用小棒摆、c.用绳子围;d.用身体围等,尤其是林文轩想到的用绳子将吸管串起来形成的三角形和巩镓慧、王辛泽用脚摆出的三角形让我印象深刻,我看到智慧在他们的手指尖上闪光。
活动二:动手画三角形。
在画三角形中学生进行大胆地尝试和不同方法地展示,然后课件中电脑小博士又进行了展示,接着我也在黑板上展示了不同的方法:先在不同方向点3个点,再把它们按一定的顺序连起来,一个三角形就画好了,学生在活动中体验感受了画三角形的不同方法,获得对三角形深刻的认识。
活动三:探究三角形的高。
我创设以下情境引出高:小松鼠和长颈鹿很喜欢三角形,它们住在正面是三角形的房子里,请猜一猜,长颈鹿住的是几号房?说说你的理由。请学生上前来指一指并说一说,他们很自然的就正确找到高:从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。然后尝试画高,并请学生讲解画高时要注意的问题:高要画成虚线,同时加上垂直符号,再标出底和高。
活动四:研究三角形的稳定性。
三角形是一个抽象的概念,稳定性是在抽象概念基础之上探究出来的,有必要让学生经历特性得出的全过程。在探究特性中,“比比谁的力气大”男生和女生的拉框架的比赛吸引了孩子们的思考,他们亲身体验三角形的稳定性,留下了深刻的印象,但是如果仅仅这样,探究仅停留在表面,那为什么三角形具有稳定性而四边形容易变形呢?一石激起千层浪,我请学生用牙签摆一摆:a.你能摆出几种形状和大小不同的三角形?b.你能摆出几种形状和大小不同的四边形?最终他们发现:用同样的三根小棒,无论怎样摆,只能摆出一种三角形,所以三角形有稳定性;而用同样的四根小棒,可以摆出很多形状和大小不同的四边形,所以四边形容易变形,这样使学生透过现象看到本质。
3.置身生活,感悟价值。
生活是数学的源泉,我们要善于为学生捕捉生活中的数学现象,挖掘数学知识的.生活内涵,创设生活化的学习环境,使学生在生活氛围中积累活动经验。课堂中当学生用实验证明了三角形具有稳定性,这时我出示大量生活中的很多物体都利用这一特性例子,向学生展示了衣架、自行车、篮球架、太阳能热水器、电线杆、双人漫步机它们都利用了三角形的稳定性,同时告诉他们其实有关三角形的稳定性,不仅仅我们人类善于利用,有些动物似乎也懂得三角形的好处,袋鼠休息的时候坐在自己的尾巴上,它的尾巴被称作“第三只脚”,尾巴和它的两只脚也形成了一个三角形的面。然后鼓励学生用数学的眼光观察生活,再找到生活中利用三角形稳定性的例子。课堂最后,我出示了一组三角形的图片,内容有:鸟巢是2008年奥运会的主会场,形态如同孕育生命的“巢”,更像一个摇篮,寄托着人类对未来的希望。法国的埃菲尔铁塔高320多米,有120多年历史,它经历了百年风雨后仍然风采依旧!法国的罗浮宫是世界四大历史博物馆之首,距今已有800多年。胡夫金字塔是埃及金字塔中最大的金字塔,高136.5米,相当于40层摩天大厦高,塔身用230万块巨石堆砌而成,总重量约为684万吨,是埃及国家的象征。让学生充分地感受人类是充满智慧的以及三角形的魅力,他们由衷地感受到三角形功不可没!
4.善用评价,鼓励学生。
课前我请所有来听课的家长每人用心制作了一颗精美的小星星,精心设计了评选表现之星的环节,受这个活动的带动,所有的学生都把自己最好的一面展现出来,尤其王小易的妈妈更为有心,她给每一个孩子发放了一颗小星星,奖励所有孩子的表现,对学生是个莫大地鼓励,这一环节使孩子们倍受鼓舞。
二、努力之处
1.增加画图示范环节。
在教学画高这一环节虽然学生尝试画高,课件也进行了演示,但是我也应该再亲自示范来画高时,完整地演示高的画法,这样才能让学生对高有一个更深刻的认识。
2.科学把控教学时间。在小组展示汇报时我应更好地把控时间,这样可以有时间对习题中的直角三角形和钝角三角形画高的方法进行训练。
弗赖登塔尔说:“学一个活动的最好办法是做”,课堂中我注重学生的实践活动,充分让学生动手、动口、动脑,让他们充分体验数学活动是一个生动活泼的、主动和富有个性的过程。
《三角形》 15
1、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、面向实际的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、表达、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学习而设计”、“为学生的发展而教”,那么我们的`课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。
2、让每位学生都有所发展。这节课我进行了8次课堂巡视,其中4次参与学生的讨论、交流,两次分别对三名学困生进行重点辅导,巡视时关注面较广,目的性明确。但在“个别学生课堂行为表现”的重点观察中,一位学困生在前半节课中共举了两次手,未被我关注,之后再没举过一次手。课后这位学生找到我问我原因。我与他进行了个别谈话,问他为什么后半节课没再举手,回答是:“反正也不会提问到我。”学生的态度似乎有些不以为然,其实蕴含着不满。说明我们教师在课堂中不应忽略个体差异、害怕问题暴露,相反应充分重视、关爱学困生,让每位学生都有所发展。
3、对数学学习的评价要做到既关注学生学习的结果,更要重视他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对学生的精彩回答应予以热情的肯定,促使学生的思维更加活跃。
4、加强对学生的思维和方法的指导。创造一个好的数学问题情境,提供孩子们理解数学的模型和材料是教学设计活动中的第一步,但是要让学生看到其中所蕴涵的数学观念,作为教师不能让这些数学活动只停留在表面。
【《三角形》 】相关文章:
三角形的认识 02-08
三角形分类 12-31
《三角形的分类》 03-13
《三角形的认识》 04-03
认识三角形 04-26
三角形的面积 11-26
全等三角形的 12-02
《三角形的特性》 01-25
《三角形的面积》 06-17