《运算律》
身为一名人民教师,课堂教学是我们的任务之一,借助 我们可以学习到很多讲课技巧,来参考自己需要的 吧!以下是小编为大家收集的《运算律》 ,仅供参考,欢迎大家阅读。
《运算律》 1
教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
我们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解如:(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和 25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的`理解。
如:计算125×88;101×89你能用几种方法?对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《运算律》 2
这节课是四年级上册第56-57页的内容,是在学生已经掌握了加法计算方法的基础上展开教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,根据学生的认知规律,我坚持以“学生为主体”的理念,力求突出以学生发展为本的教育思想,所以整个教学过程以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。
一、创设情境,营造愉悦的氛围,激发兴趣。
课前的语言游戏,通过“调侃”的语气,营造轻松愉悦的气氛,同时,游戏方式中渗透着加法交换律的外形特点。接着以学生近期所关注的焦点——校运会为切入点,选择几个学生喜闻乐见的活动场景,激发学生的学习热情,为学生的自主探究创设良好的氛围。
二、让学生经历有效的探索过程。数学学习的过程是一个发现问题、提出关于解决问题的猜测、尝试解决、验证与修正、形成算法、推广应用的过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“列式猜想——观察发现——举例验证——概括规律”这一数学学习全过程。首先在学生初步认识了28+17=17+28这样的等式以后,引发学生的猜想:是不是其他的两个数相加也有这样的规律呢?让学生写一两个例子并验证,此时再问“像这样的等式你还能写多少个?”学生说“无数个”,唤醒了学生已有的知识经验,使学生初步感知加法运算律。通过四人小组合作探究:说说在写的过程中发现了什么规律?想办法把这个规律表示出来,让学生轻松体会到“两个加数交换位置和不变”这样的规律,学生尝试运用符号、图形、文字和字母等表示规律后,教师再引出简洁的表示方法“a+b=b+a”指出这就是加法交换律,从而发展学生的符号感。在探索加法结合律的过程中,通过引导学生用迁移类推的方法探究加法结合律。在学生动手举例验证后,通过四人小组合作讨论“观察这些等式,你发现了什么规律?”为学生提供自主探索的时间和空间,让学生经历运算律的发现和探索过程,获得成功的体验,增强学生学习数学的信心。
三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了探究学习的'全过程,在此基础上,及时对探究加法交换律的方法做了小结,然后引导学生运用同样的研究方法开展研究加法结合律,利用课件出示探究方法的步骤,通过四人小组合作学习,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。为学生提供足够的自主探索的时间和空间,学生将已有学习方法,迁移类推到探索加法结合律的学习中来,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
四、教学中注意沟通知识间的联系。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。
同时,在教学过程中,我也认识到了一些不足之处:
学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题,引导的不够巧妙,也正是因为这样,耗时比较多,以至后面的练习没能够完成,使得课堂不够自然流畅。
《运算律》 3
教学内容:加法的交换律和结合律1、教材p56~58例题和想想做做。
教学目标:
1、通过观察、比较和分析,归纳出加法交换律和结合律。
2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。
3、培养学生分析、判断、推理能力,提高学生解决问题的能力。
教学重点:理解加法交换律、结合律,并能正确运用。
教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。
教学准备:课件。
教学过程:
一、开门见山,直接导入。
1、开门见山:今天我们一起来学习“运算律”。
2、看:(运算)我们学过哪些运算?
“律”指什么?那今天我们要研究什么?
3、想想,今天会研究哪一种运算的规律?为什么先研究加法?(一年级先认识加法)从几步计算研究?(一步)
4、好,我们就从简单的入手,先研究简单的,再研究复杂的,好吗?
二、创设情境,提出问题。
(一)、研究加法交换律。
1、出示书本情境图引入。
仔细看图,你能提一个最简单的用加法计算的一步问题吗?
预设:跳绳的有多少人?
女生有多少人?
2、解决问题,初步感知。
怎样列式?
28+17=45(人)17+28=45(人)
17+23=40(人)23+17=40(人)
观察第一组两个算式,你发现什么?引导板书:28+17=17+28
那第二组两个算式呢?板书:17+23=23+17
3、引发猜想,举例验证。
问:是不是所有的两个数相加,交换加数的位置,和都不变呢?
既然是猜想就需要验证,怎样来验证?(板书:猜想验证)
请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。
4、观察等式,发现规律。
问:观察这些等式,说说它们有什么共同特点?
小结:两个加数相加,交换加数的位置,它们的和不变。
5、引导学生探索加法交换律的表达方式。
①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。
汇报:
预设1:我们用数字(文字)表示
2:我们用符号表示
3:我们用字母表示
②比较表示的不同方式,提出用字母表示发现的规律比较简洁。
出示板书:a+b=b+a
指出:这样的规律就是加法交换律。(板书)
想一想,以前学习中什么地方用过它?
引入:简单的研究过了,下面我们要研究稍微复杂一点的,这幅图,你还能提什么问题呢?
(二)研究加法结合律。
1、再次出现主题图。
研究:参加活动的一共有多少人?
学生列式后,板书等式:(28+17)+23=28+(17+23)
观察比较上面算式,思考:等式左右两边什么变了?什么没变?
2、丰富表象,初构规律。
完成书上的两组算式,再次比较等式左右两边的“变”与“不变。
问:你发现了什么?
3、举例验证,确认规律。
学生小组合作,进一步举例验证规律。
三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。
得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)
(三)比较两种运算律的异同。
说说两种运算律不同点是什么?相同点是什么?
三、巩固练习,拓展延伸。
1、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。
2、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用。
3、比一比,谁算得快。完成第三题。
4、拓展560+(140+70)=(□+□)+□
(64+□)+27=64+(□+27)
71+68+□
你认为□里填什么数会使你的计算简便?怎样简便计算?
5、游戏:找朋友。
(1)哪两个同学手上的树叶的和是100?
(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。
四、全课总结,引申知识
今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。
五、布置作业:
课堂作业:《补充习题》。
板书设计:略
:
《加法运算律》这一节课是在学生经过较长时间的四则运算学习,对四则运算已有较多的感性认识的基础上学习的。学生从小学低年级开始就接触过加法的验算和口算等方面的知识,对此有较多的感性认识,这是学习加法运算律的基础。在这节课中,我有意识地让学生运用已有的`经验,经历运算律的发现过程,让学生在“观察、发现、猜想、验证、得出结论”的数学学习方法中学会学习。一节课下来,自我感觉做得较成功的有以下几点:
一、联系生活实际,激发求知。
小学生学习数学的积极性一定程度上取决于他们对学习素材的兴趣,现实的问题情境、有趣的数学游戏容易激发他们学习的欲望。所以上课伊始,我以学生身边熟悉的:跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。先让学生观察情境图,从图上获得哪些信息?根据这些信息你可以提出什么问题?这样的导入既吸引了学生注意力,又培养了学生的问题意识。学生能马上提出一些问题,为后面的探究学习做好了铺垫。通过情境,组织学生认真观察,分析根据提供的信息来选择所提问题有联系的条件进行分析、计算,使学生经历加法运算律产生和形成的过程。
二、注重策略方法,指导自主学习。
数学课程标准指出:最有价值的知识是关于方法的知识,“授之以鱼不如授之以渔”。从一开始学习加法交换律时,让学生通过参与学习活动得出观察、发现、猜想、验证、结论这一学习方法。并应用这一方法去学习加法结合律。让学生在合作与交流中去探究加法的结合律,合理地构建知识。学生掌握了学习方法就等于拿到了打开知识宝库的金钥匙。在教学时,我注意了以下几方面的问题:一是在猜测中产生举例验证的心理需求。在学生根据问题情境得28+17=45、17+28=45之后,学生通过观察发现交换两个加数的位置,和相等。我适时提出这样的猜想:“是不是任意两个加数交换位置,和都相等呢?”学生不敢肯定,有了举例验证的内在需求。二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生同桌合作,共同举例,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有的用图形表示:△+○=○+△,有的用文字表示:甲数+乙数=乙数+甲数,也有的用字母表示:a+b=b+a。这样的思维方式既是对加法交换律的概括与提升,又能发展符号感。
三、及时评价、鼓励。
在课堂上我及时评价总结,肯定学生在学习过程中的点滴进步,捕捉学生在探索过程中的闪光点。学习内容的理解也提升到一个更高的层面。
当然,一节课下来也有不少遗憾。在课堂教学中,我没有准确把握好每一个孩子,驾驭课堂的能力还不够。整节课,由于新授部份花的时间较多,显得有些拖沓,有些细节引导还不是很到位,还需要加强,但在以后的教学中我会不断地挖掘,不断学习。
《运算律》 4
本节课是对加法运算律的运用,通过这节课的教学,一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。
首先以计算47+58+42为教学例题,讨论:你会怎么做?生:先给58+42加上小括号。运用了加法的结合律。师:怎么计算89+14+56。最后出示:78+(47+22),学生独立做在本子上。交流时,强调这里运用了加法的交换律和结合律。练习时候,我以怎么计算204+417为例,学生独立完成。交流时出现两种情况:一个是把204拆成200+4,一个是把417拆成400+17。师:哪个数更接近整百呢?把哪个数拆开更有利于我们接下来的计算?学生们统一了认识,在后来的练习中,还是有好多孩子不能选择更接近整百的数去拆。
对于例如:345+201这样的.计算,在怎样运用简便计算时掌握的不是很好。这反映了学生对于运算律的运用还不够灵活,尤其是对运算律的逆向运用,我觉得可以进行一个专项的训练。
《运算律》 5
教学片断
(根据问题情境得出28+17=17+28后)
师:仔细观察左右两道算式,你有什么发现?
生:我发现两个加数的位置调换了。
生:我发现两个加数的位置交换后,和是不变的。
师:是不是所有加法算式中交换加数的位置,和都不变呢?
生:是。
生:不是。
师:接下来,请大家举例验证。老师给大家提几条建议:(1)自己举例、计算。(2)小组交流:是否存在例外的情况?(3)推荐一名代表上台展示验证实例。
(学生举例交流)
生:23+17=4017+23=4017+23=23+40、45+50=50+40、300+540=540+300
师:加法算式中加数的位置换了,和有不相等的例外情况吗?
生:没有。
师:从这些例子中,你可以发现什么规律?
生:两个加数的位置交换后,和是不变的。
生:我也发现交换两个加数的位置,和不变。
师:你能用自己喜欢的`方法表示出这一发现吗?
生:甲+乙=乙+甲
生:△+○=○+△
生:□+○=○+□
生:a+b=b+a
师:你们想的办法真多。用字母表示数是数学学习中的重要策略,用a、b表示两个加数,这个规律可以写成a+b=b+a。
师:你能帮这个规律取个名吗?
师:在加法交换律中,变化的是(两个加数的位置),不变的是(它们的和)。原来变与不变还可以这样巧妙地结合在一起的。
教后反思
苏霍姆林斯基指出:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要更为强烈。”在这种思想的指导下,我在加法交换律的教学中,注意充分发挥学生的主体作用,引导学生经历规律的不完全归纳的过程,让学生在自主探究中体验探索与创造的快乐,从而在一种自然而然的心理需求下发现并总结出属于自己的运算律。
在教学时,我注意了以下几方面的问题:
一是在猜测中产生举例验证的心理需求。在学生根据问题情境得出28+17=17+28之后,学生通过观察发现交换两个加数的位置,和不变。我适时提出这样的问题:“是不是所有加法算式中交换加数的位置,和都不变呢?”学生的猜想不一,有了举例验证的内在需求。
二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生小组交流、全班交流,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。
三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有图形表示的,有文字表示的,也有字母表示的。既是对加法交换律的概括与提升,又能发展符号感。
四是注意不断为后继学习作准备。除了前面提到的举例验证和用不同方式表示运算律,还有当学生总结归纳出加法交换律后,让学生再次观察加法交换律中的变与不变,既深化了对加法交换律的认识,又为学生后继学习规律作了充分准备,提高学生探索规律的能力。
《运算律》 6
本单元的内容有:加法运算定律,包括加法交换律和加法结合律。乘法运算定律,包括乘法交换律、乘法结合律和乘法分配律。学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:
第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)
第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的`考验,如42X25,运用运算定律计算这个算式,很多学生是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第有的学生甚至运用运算定律折腾了一番又回到了原来的算式。
综上所述,解决办法只能是多练,不断的培养学生的数感,在不断的练习过程中,体会应该如何运用运算定律。
《运算律》 7
教学目标:
1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能应用这两个乘法运算律进行一些简便运算。
2、在学习新知的过程中,培养学生新旧知识间的迁移能力,灵活选择和应用乘法交换律和乘法结合律。
3、培养学生良好的学习习惯。
教学重点:
理解并掌握乘法运算律,能合理应用乘法运算律进行简便计算。
教学难点:
灵活选择和应用乘法交换律和乘法结合律,正确计算。
教学过程:
一、复习旧知
1、谈话:加法中有哪些运算律?请举例。
(加法交换律、加法结合律)
2、猜想新知:你认为乘法中是否也有类似的定律?
(学生发表自己的想法)
二、自主探究
1、出示挂图
说说题目的条件和问题分别是什么?列式计算。
5×33×5
观察这两道算式,你发现什么?
用等号将这两道算式连起来。
学生举例。
2、给这种运算律取名,并相互用语言表述这种运算律。
3、集体取名,并交流运算律的内容。
4、用字母表示这种运算律。
5、练习
15×6=6×( ) ( )×46=( )×54
□×○=( )×( ) a×8=8×( )
6、自学乘法结合律
7、集体交流自学情况。
(1)举例
(2)用字母表示
(3)用语言表述乘法结合律的内容
8、完成“试一试”
三、巩固练习(略)
四、课堂小结
五、课堂作业
教后反思:
学生在学习了加法加换律和加法结合律的基础上学习乘法的运算律,相对来说比较轻松,因为乘法的运算律和加法的运算律相似,所以这节课我放手让学生自己去探究规律,这样不仅充分激发了学生学习的.积极性,而且使学生体会发现新规律的方法,乘法结合律和乘法加换律相比,用语言完整地表述有一定困难,教师在学生充分交流的基础上帮助学生规范语言,既能使学生获得清晰的认识,又为学生展示自身才能创造了足够的空间。
《运算律》 8
乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出的问题:学校要组织“六一”活动,我们班要出一个节目,现在要买服装,这些服装共要多少钱?通过两种方法和算式的比较,使学生初步感知乘法分配律。先让学生根据提供的问题,用不同的'方法解决,让学生观察。在此基础上,让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?继续为学生提供具有挑战性的研究机会:“请你再写出一些这样的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。
这样既培养了学生的猜想能力,而且培养学生主动探究、发现知识的能力以及验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。为培养学生数学模型思想,我又让学生试着用字母来表示这个规律,较好的培养了学生的抽象思维能力。对于这个规律,不是仅仅满足于学生理解、掌握乘法结合律,同时注重了对乘法结合律的运用,使学生明白学习规律能给我们带来计算上的方便,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力,激发了学生的数学学习兴趣。
课堂上我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。课堂上虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好, 在下节课练习设计上,我力求有针对性,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×9)×4=25×4+9×4,让学生通过争论明白当(25×9)×4时用乘法结合律简算;当(25+9)×4时用乘法分配律简算。在连线题目中,我设计了乘法分配律的扩展型101×58;61×2-31×2;35×16+35×83+35。通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。
《运算律》 9
1、猜想一种学习的方法,很多世界性的难题和这些难题的解决都得益于猜想这样一种学习的方法。
关于这节课的第一个环节——由加法交换律、加法结合律进而猜想出乘法交换律、乘法结合律的内容。那么我在想我们在解决一个实际的问题时,会不会有一个即定的方法。通常情况下我们不可能知道应该朝哪一个方向去猜想,需要我们去搜索,有时它会突然冒出来(即直觉)。所以我认为猜想的重点是怎样把联想的对象(这里指加法交换律、加法结合律)找出来(即找到一个思考的方向)这应该是这节课的关键。
2、验证的过程。
这节课验证的过程是这样:因为所有学生写出来的算式都证明这个定律是正确,所以这个定律是对的。这个过程对吗?实际上这个过程不一定正确,虽然在小学阶段主要采用的是演绎法和不完全归纳法。验证的过程应该是学生对定律内容的理解,举例子只能说明学生对定律内容的一个表层的认识,是非常具体的(即根据定律的字面意思去理解)。应该引导学生从乘法意义上理解乘法交换律(如6×7,7×6它们都表示6个7相加是多少或7个6相加是多少,它们表示的是同一个意义,所以它们的积是相同的`),这样的话学生对乘法交换律的理解是更进一步的即在抽象层面上的。我后来觉得是否可以这样:当学生引出了字母公式后,师:我们通过举例子可以知道这个定律是正确的,那你们还有其他的想法?(如果没有)师:能不能根据乘法意义来理解这个乘法交换律?(让学生说说怎么去理解)
3、缺乏深度。
从这几个方面来说:1对两个定律的理解,停留在表面没有对内容进行深入的理解(进行抽象的概括)从学生方面来说,缺乏挑战,没有难度。特别对乘法结合律的理解,没有能及时地进行总结,以至当出现于内容不是一致的时候)学生就觉得有点困难。对结合律的理解应该让学生理解到结合律就是三(几)个数相乘,不管那两个数相乘再和第三个数相乘,它们的积都一样。要使学生这样去理解。第一,通过举例子(写出算式来验证);第二,通过生活实际来理解三个数相乘是怎么回事。最后可以问:学习了这两个定律你认为有什么用?(让学生说到可以使计算简便)。我认为如果这样的话,自己这节课有个非常突出的特点就是以一种学习方法贯串整节课:联想_猜想_验证_抽象
《运算律》 10
本单元内容包括:加法交换律和结合律,乘法交换律、结合律和分配律,应用加法和乘法运算律进行一些简便计算,应用加法和乘法运算律解决一些实际问题。这部分内容主要引导学生在已经理解并掌握了整数四则运算的意义,和整数四则混合运算的运算顺序,能正确解决有关实际问题的基础上,对加法和乘法运算中的一些规律进行概括和总结。加法和乘法的运算律,不仅对整数运算适用,对小数,分数的运算,乃至对中学阶段的有理数、实数的运算也同样适用,是小学数学知识体系中最重要、最基础的知识之一。学习这部分内容,不但有助于学生加深对四则运算意义和计算方法的理解,而且能有效发展学生灵活选择简便计算的策略,同时也为学生以后学习和探索有关小数,分数的简便计算奠定坚实的基础。鉴于本单元教学内容的特殊性,教学时我主要关注以下几方面培养学生自主简便计算的意识。
一、充分利用已有的知识经验,引导学生通过自主的活动理解并掌握运算律。 回忆在以前的学习中,学生对四则运算中的一些规律已经有了比较丰富的感性认识。
如,学习加法和乘法时,用交换加数或乘数的位置再算一遍的方法验算加法或乘法;口算12×3时,先算10×3=30,2×3=6,再算30+6=36。教学中我主要引导学生通过自主的活动,把已经积累起来的感性经验上升为理性的认识,并应用这些规律进行一些简便运算,解决一些实际问题。教学时充分利用学生已有的知识和经验你,通过具体的实际问题,引导学生经历运用已有知识解决问题的过程,并在对不同解法的比较中发现并提出问题,再通过举例、比较和分析,完成对运算规律的有意义建构。这样,通过现实的问题情境,引导学生在解决问题的过程中,逐步把自身经验系统中的感性认识抽象成形式化的数学结论。
二、引导学生经历探索和发现运算律的过程,培养合情推理能力和符号意识。 教学时我精心设计学生的数学活动线索,在引导学生从现实的情境中发现和提出问题后,并没有立刻揭示有关结论,而是把学习的主动权交给学生,引导他们再举出类似的算式,通过计算、比较和分析,发现它们的共同点,并用自己能理解的方式描述规律。在此基础上,用含有字母的式子把发现的规律表现出来,
使得规律的表达更准确、简明、形象。这样安排教学,有利于初步感悟归纳的数学思想和方法,发展合情推理能力,又有利于学生获得初步的符号意识,感受数学表达的严谨和简练,也为以后学习用字母表示数做一些准备和铺垫。
三、引导学生经历应用加法和乘法的运算律进行简便计算的过程,培养学生的运算能力。
学习和探索运算律,不仅可以加深学生对有关运算的理解,而且可以有效地丰富学生解决计算问题的.策略,使计算方法更简便、更灵活,发展学生的运算能力。例如,我在教学加法交换律和结合律之后,我根据教材提供线索专门设置不同计算方法的简便计算,引导学生联系已有的计算经验解决问题。我主要设计这两类题型:127+203 354+103 417+305 468+103 639-128-72 523-(23+46) 156-56-44有其容易出错的题目,主要从算式的意义上让学生理解简便计算的合理性。
四、引导学生经历运用所学知识解决实际问题的过程,培养分析和解决问题的能力。
众所周知适当引导学生运用所学知识解决一些实际问题,不仅可以深化学生对所学的知识的认识和理解,还可以帮助他们体验把现实问题抽象成数学问题的过程,感悟运用所学知识解决问题的策略和方法,提高分析和解决问题的能力,增强应用意识。教学时精心选择练习,主要是相遇问题以及相关结构的习题,如:
这类问题引导学生经历解决问题的过程,并在不同解题方法中感受乘法分配律在解决问题中的应用,积累分析数量关系的经验,提高分析和解决问题的能力,培养应用意识。
五、关注学生运用新知识解决旧知能力,培养学生自主解决问题的能力。
本单元的 “探索与实践”第12题具有一定的综合性,解决问题时需要应用
加法和乘法运算律、平均数等有关知识。教学时我更多地关注计算的过程,提醒学生怎样计算会更简便,而且又正确。解题过程如下:
纵观解题过程,看似步骤较多写起来较麻烦,但是整个过程全部口算完成,不会出现半点差错。我相信如果教学中能有较多类似的关注,学生的计算能力会有质的飞跃。而且这样的问题再也不需要写出太多的步骤。
六、积累素材,拓展书本知识,提高计算技能
在练习中不断训练学生的数感,关注特殊数字形成计算技能。如:125、8、25、4、15、2、35??
再如:适当补充乘法分配律的拓展练习 58×58+41×58+58 174×63+74×63 59×101-59知识源于积累,在学习中要不断提醒学生做个有心人,从根本上改变自己的学习态度,才能正真学到数学的奥妙和真谛。作为教学一线的教师要关注学生点滴进步,鼓励他们,真正地为学生发展着想,不断培养学生学习数学的兴趣。
《运算律》 11
教学目标:
1。使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,培养归纳、推理的能力,逐步提高抽象思维的水平。
3。使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:
让学生在探索中经历运算律的发现过程,理解不同算式的相等关系,概括运算律。
教学难点:
概括运算律并会运用。
教学过程:
一、创设情境,大胆猜想
师:为了欢迎听课的老师,咱们班同学准备了几束鲜花。
出示图:左边有5束鲜花,右边有4束鲜花,一共有几束鲜花?怎样列式?
生:5+4=9,4+5=9。(师板书:5+4○4+5)
师(小结):这两个算式结果相等,我们就可以用等号把它们连接,变成一个等式。这个等式里蕴藏着我们今天要探索的规律,猜一猜,是什
么?是不是所有像这样的加法算式都有这样的.规律呢?今天我们继续探究。
二、自主探索,学习新知
(一)教学加法交换律
1。出示情境图:体育课,同学们正在操场上做运动。
师:从图中你了解到哪些数学信息?你能提出一些用加法解决的问题吗?
生1:跳绳的有多少人?怎么列式计算?(17+28=45,28+17=45,17+28○28+17)
生2:女生有多少人呢?(23+17○17+23)
师:继续观察这两道算式,你发现了什么?中间可以用什么符号连接?
2。那么,你能再写出几道像这样的等式吗?
(学生写后,同桌互查,指名交流,师相继板书三道等式) 师:这些都是等式吗?怎样验证?这些等式都有什么特点?
3。师:像这样的等式还有很多,咱们能举完吗?(师板书省略号)那么,你能用自己喜欢的方法把自己发现的规律表示出来吗?(学生交流后,再看书自学P56)
提问:通过学习,你知道可以怎样表示?你觉得哪种表示方法最能体现数学简洁明了的特点?(集体反馈并总结,师板书a+b= b+a) 师:这个等式表示什么?(生交流,师板书加法交换律)
4。师:其实,加法交换律和我们并不陌生。357+218,你想到了什么?(生交流验算的依据)
师:那么,你知道为什么调换加数的位置,和不变吗?(看的方向不同,但总数不变)
(二)教学加法结合律 1。课件出示问题:参加活动的一共有多少人?怎样列式计算?(学生交流,师板书:28+17+23)
师:先算什么?(根据学生的回答,师添上小括号)还可以先算什么? (生加括号,并说计算过程)
师:这两道算式结果怎样?可以用什么符号连接?(师板书,生齐读)
2。算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)
3。引导比较,发现规律。
师:比较这几道等式,你发现每组两个算式有什么异同?(同桌讨论后交流)
师根据学生回答进一步追问:什么变了?什么不变? (引导学生抓住不变的三层含义分析相同点)
师(小结):其实三个数相加,改变运算顺序,和不变。
【评析:加法结合律的内容,学生在以往的学习中接触不多,没有太多的感性基础,尽管凭直觉知道左右两边算式结果相等,但对左右两边算式的异同点表述并不是很清楚。这就要求教师要做到心中有数,引导学生
从变与不变的角度去分析。只有层层剥笋,使学生抓住了加法结合律的本质特征,这样在后面的运算律混合练习中才不会混淆不清。】
4。你能照样子再写一道这样的算式吗?
师:既然这样的等式写不完,那么也可以用字母等式来表示这样的规律。如果用字母a、b、c表示三个加数,你能表示出这个规律吗?(学生独立写一写,然后指名板演,师生一起检查这个等式)
师(小结):三个数连加,先把前两个数相加或先把后两个数相加,再与另一个数相加,和不变。这就是加法结合律。(板书课题)
5。学习加法结合律又有什么用呢?(出示如下题目)你能很快口算吗?运用了什么?(学生说口算过程,体会加法结合律的用处) 35+40+60 64+(36+78)18+25+75
【评析:学以致用。如果在学习之后不能使学生很快尝到“甜头”,学生则从心理上就不会完全将新知内化。所以通过快速口算,让学生省略书写过程,只从形式上去感受运用加法结合律带来的好处,强化学习运算律的目标意识。】
三、巩固练习,深化新知
师:今天我们学习了什么?有没有信心接受挑战?
1。下面的等式各用了什么运算律?
①82+0=0+82;
②47+(30+8)=(47+30)+8;
③(84+68)+32=84+(68+32);
④75+(48+25)=(75+25)+48。
2。你能在□里填上合适的数吗?说说你是依据什么填的。 ①6+35=35+□;
②a+204=□+a;
③(45+36)+64=45+(□+□);
④560+(40+c)=(560+□)+ □;
⑤560+(180+440)=(560+ □)+□。
3。完成课本P58第五题,学生独立完成后指名口答。
4。拓展练习。(挑战题)
①64+25+136+75=(64+□)+(25+□);
②30+28+70+72=(□+□)+(□+□);
③5×4=4×□;
④6×4×25=6×(□×□)。
师:加法交换律、结合律对四个数相加、五个数相加适用吗?更多数相加呢?由加法交换律、加法结合律你还能联想到什么?乘法是否也具有这样的运算律?大家的猜想对不对呢?你们课后能像这节课一样去探究验证一下吗?
【评析:练习设计既重视基本知识的训练,又能充分挖掘习题的功能,及时进行拓展训练,培养不同层次学生的思维水平。特别是最后两道乘法式题的练习,引导学生在学习加法运算律基础上去猜想乘法是否也具有这样的运算律,为学生沟通了知识之间的联系,实现了学生思维的可持性发展。】
四、全课小结
《运算律》 12
教学内容:加法交换律和结合律
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。 2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。 3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。 教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换 律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。 教学过程:
一、探索加法交换律。
1、这是某班同学进行体育锻炼的情景图,从图上你了解到哪些数学信息?
2、根据这些信息,求“跳绳有多少人?”怎样列算式?(出示问题)
学生口头列算式,教师板书。
3、师:上面两道算式的得数相同,(板书)我们可以用什么符号把这两道算式连起来?(板书:28+17=17+28)齐读一遍。
4、列举归纳,积累感知。
谈话:那么,等号的两边有什么相同的地方,有什么不同的地方?
照样子,你能再写几个这样的等式吗?(一边写一边算一下等号两边是否相等。)
学生写出类似的等式,教师有序地板书学生的等式,并口头验证等号前后是否相等
5、合作交流,概括规律。
(1)同桌交换本子,检查一同桌写的等式左右两边是否相等?
(2)仔细观察这些例等式,你发现了什么?
学生先独立思考,再全班交流。
(3)小结:通过举例验证,我们发现了这样的规律:两个加数交换位置,和不变。(出示规律,齐读一遍)
6、个性创造,构建模型。
(1)谈话:加法当中这样的等式,你能写多少个呢?这是我们需要用简单的办法把这些等式表示出来。你喜欢用什么方法把它写在本子上。(可以用符号、文字、字母)
(2)学生用符号或字母表示加法交换律,教师巡视,并把典型的.进行板书。
(3)你是怎样表示的?学生介绍自己的表示方法。(Δ+О=О+Δ 甲数+乙数=乙数+甲数 a+b=b+a)
7、指出:在数学中,一般用字母式子来表示运算规律。a b分别表示两个加数,交换位置后是,它们的和不变,所以用“=”连接起来。(用红笔描一下)
讲述:字母式子有了,表示什么也知道了,那取什么名呢?叫加法交换律,(板书:加法交换律)
8、学法指导,评价反思。
谈话:刚才我们是怎样研究这个规律的?指着黑板,首先发现问题,然后举例验证,最后概括规律,用字母表示。下面我们要来探索加法中的另一个规律,同样要经历这几个过程,你有没有信心学好?
二、学法迁移,探索加法结合律。
1.发现问题。
(1)根据刚才收集到的信息,怎样计算“参加活动的一共多少人?”
(2)让学生在自备本上各自列式计算,
(3)全班交流并说出先算什么,板书:28+17+23=68(人) 28+(17+23)=68(人)
(4)这两个算式得数相同,我们可以把它们写成一个怎样的等式?(板书: 28+17+23=28+(17+23))
(5)请同学们观察,等式的两边有什么相同点和不同点?
等号右边先算17+23,左边呢?为了强调第一步先算28+17,暂且加上小括号,这也是为了便于比较。强调“结合”
2.老师这儿还有两组类似的等式,请同学们算一算,它们是否是等式。集体口
算。
先比较每组的两个算式,再比较这三组算式,说说你的发现。
先独立思考,再小组交流,最后全班汇报。(教师适当点拨)
3.其他的任意三个数相加是不是也存在这样的情况呢?
(1)再举一些类似的例子验证一下。(算一算,等式两边是多少)
(2)谁再来说说你的发现?
(3)用含有字母的式子来表示这个规律。
4.师生交流:
同学们发现了这样的一个规律,三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第三个数相加,和不变。这个规律叫什么?这个规律的特点就是小括号来改变运算顺序,小括号能把括号内的两个数结合起来先算,是加法结合律。(板书:加法结合律)
5.通过同学们的举例验证,我们发现了加法中的两个运算律。它们是——
三、巩固内化,拓展应用。
1.做“想想做做”第1
重点讨论第4题
2.填空:
28+37=□+28
α+45=45+□
45+85+67=□+(85+□)
△++○=□+(□+□)
3、四(1)班同学植树,第一天植树76棵,第二天上午植了38棵,下午植了24棵,两天一共植了多少棵?
(1)学生独立完成。(把不同的方法板书在黑板上)
(2)集体评议:那一题计算简便,为什么?38+76+24要先算76+24,必须要用什么运算定律?
四、评价鼓励,全课总结。
今天这节课你学到了什么知识和本领?我们是
怎样学习的?你有什么感受吗?
五、作业
想想做做第3题
《运算律》 13
结合学校组织骨干教师教学观摩研究课活动,我于20xx年5月6日上了一节教研课—运算律,现根据教学情况作出如下 。
一、教学收获
1、根据总复习课的特点和要求对教材内容进行了适当处理,各环节安排了相应的补充内容,使教学内容更符合学生实际和需求。开头安排了口算练习,对常见的题目进行了口算(得数是整十或整百),为学生下一步应用运算律奠定一定基础。
2、教材内容一开始强调的是整数的运算律,然后才过过渡到整数的运算律推广到其它数。实际上学生都已经经历过知识的迁移过程,所以我觉得根本就没有必要再走这种简单重复的过程,应该统称为运算律比较恰当。
3、我重视强调了用文字来表述运算律,以加深学生对运算律的理解。在此基础上复习用字母表示运算律。
4、用字母表示运算律时,我作了一些调整和补充,如加法结合律:a+b+c= a+c+b= b +c+a乘法结合律:abc=acb=bca 乘法分配律:ac+bc=(a+b)c ac-bc=(a-b)c。其实运算律的表述不应该仅局限于两个数或三个数相加或相乘。
5、让学生直接记笔记,培养听课记笔记的习惯。
6、多给学生进行练习、演示和展示,通过师生互动、学生小组合作学习等多种方式查找存在的问题,并进行改正。
二、教学中的不足
1、对教学内容的处理,特别是对练习题的.安排上还做的不好,没有很好体现练习的针对性、层次性和实效性,对学生暴露出来的问题没有进行及时提炼和解决,还一定存在部分学生的问题还没有暴露和展示出来。
2、培养学生良好的学习习惯应该从细节着手,教师在读书、写字、一言一行上要做好示范带头作用。
3、学生小组的合作、探究学习活动没有给予充分的考虑和安排,没有从时间、空间上给予充分的保证,学生活动空间被教师压缩了。
4、少部分学习困难的学生在学习过程中没有得到教师合理的关注和引导,也没有得到小组同学真诚的关心和正确的帮助。
《运算律》 14
学生从二年级就开始接触乘法计算,对乘法积累了较多的感性认识,这是学习乘法交换律和结合律的基础。对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境,激发学生的学习兴趣,让学生发现问题,提出猜想、进行验证、总结应用的思路进行的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的'知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
1、提供自主探索的机会。
“动手实践、自主探索与合作交流是学习数学的重要方式”。在探索整数乘法运算律推广到小数的过程中,我为学生提供自主探索的时间和空间,使学生在学习活动中获得成功的体验,增强了学习数学的信心。
2、关注学生已有的知识经验。
在学习整数乘法运算律推广到小数之前,学生对整数乘法运算律已有了较多的感性认识,为新知学习奠定了良好的基础。教学中让学生处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
3、引导学生在体验中感悟数学。
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。
在教学工作中,并对照开学初的计划,我从以下方面加强改进日常教学:
1、注重从学生已有认知基础入手。如:紧密联系整数乘、除法的意义、计算方法、四则混合运算,使学生把整数运算知识迁移到小数运算中来。
2、注意教给学生运用多种计算方法,以培养学生的灵活计算能力。如在简便运算中,让学生分别用竖式计算和用运算律计算,通过比较,让学生认识到这些规律具有的普遍意义,又能对这些知识得到加深理解和牢固掌握。
3、注重培养和提高学生的分析能力和审题能力,能解决小数乘、除法在实际生活中的应用。
4、注重后进生双基的补习,让培优转差落到实处,以提高整体水平。
虽然班级的基础偏差,面临的形势比较严峻,但只要与学生建立良好的师生关系,日常加强题组训练,突破难点,培养起学生学习数学的兴趣,为进一步的学习打下更好基础。
《运算律》 15
本学期学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。
学生对于加法交换律和乘法的交换律掌握较好,然而对于乘法结合律则运用得不太理想。
反思造成的原因及解决办法如下:
第一,学生现在只是能够初步认识,还不明白这几个运算定律的作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算 ,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的理解,更要在学生的脑海中渗透“凑整”的思想。
第三,对于有些算式,有的'学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
综上所述,学生并没有深刻体会到运算定律带来的方便,解决办法可以是多讲多练,多做一些对比性强(能简便与不简便的混合运算)的题目,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,(以能凑成整十、整百的优先组合为原则)也就是如何做题。等接触的题目类型多了,我想学生会感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣
【《运算律》 】相关文章:
运算律 05-30
《加法运算律》 07-07
《有理数加法运算律》 10-08
《运算律》说课稿12-13
《运算》 03-20
《混合运算》 03-09
《数的运算》 04-06
《简便运算》 11-27
《同级运算》 05-09